Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 169 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
169
Dung lượng
2,49 MB
Nội dung
CHƯƠNG 1: CÔNG THỨC LƯNG GIÁC I. Đònh nghóa Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M trên đường tròn lượng giác mà sđ AM = β với 02 ≤ β≤ π Đặt k2 ,k Zα=β+ π ∈ Ta đònh nghóa: sin OKα= cos OHα= sin tg cos α α= α với cos 0α≠ cos cot g sin α α= α với sin 0α≠ II. Bảng giá trò lượng giác của một số cung (hay góc) đặc biệt Góc α Giá trò () o 00 () o 30 6 π () o 45 4 π () o 60 3 π () o 90 2 π sinα 0 1 2 2 2 3 2 1 cosα 1 3 2 2 2 1 2 0 tgα 0 3 3 1 3 || cot gα || 3 1 3 3 0 III. Hệ thức cơ bản 22 sin cos 1α+ α= 2 2 1 1tg cos +α= α với () kkZ 2 π α≠ + π ∈ 2 2 1 tcotg sin += α với ( ) kkZα≠ π ∈ IV. Cung liên kết (Cách nhớ: cos đối, sin bù, tang sai π ; phụ chéo) a. Đối nhau: α và −α ( ) sin sin−α = − α ( ) cos cos−α = α ( ) ( ) tg tg−α = − α ( ) ( ) cot g cot g−α = − α MATHVN.COM www.MATHVN.com b. Buø nhau: α vaø π−α ( ) () () () sin sin cos cos tg tg cot g cotg π−α = α π−α =− α π−α =− α π−α =− α c. Sai nhau π : vaø α π+α ( ) () () () sin sin cos cos tg tg cot g cot g π+α =− α π+α =− α π+α = α π+α = α d. Phuï nhau: α vaø 2 π −α sin cos 2 cos sin 2 tg cotg 2 cot g tg 2 π ⎛⎞ −α = α ⎜⎟ ⎝⎠ π ⎛⎞ −α = α ⎜⎟ ⎝⎠ π ⎛⎞ −α = α ⎜⎟ ⎝⎠ π ⎛⎞ −α = α ⎜⎟ ⎝⎠ e.Sai nhau 2 π : vaø α 2 π +α sin cos 2 cos sin 2 tg cotg 2 cot g tg 2 π ⎛⎞ +α = α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ MATHVN.COM www.MATHVN.com f. ()() ()() () () +π=− ∈ +π=− ∈ +π= ∈ +π= k k sin x k 1 sinx,k Z cos x k 1 cosx,k Z tg x k tgx,k Z cotg x k cotgx V. Công thức cộng ( ) () () sin a b sinacosb sinbcosa cos a b cosacosb sinasinb tga tgb tg a b 1tgatgb ±= ± ±= ± ±= ∓ ∓ VI. Công thức nhân đôi = =−=− = = − − = 22 2 2 2 2 sin2a 2sinacosa cos2a cos a sin a 1 2sin a 2cos a 1 2tga tg2a 1tga cotg a 1 cotg2a 2cotga − VII. Công thức nhân ba: 3 3 sin3a 3sina 4sin a cos3a 4cos a 3cosa =− =− VIII. Công thức hạ bậc: () () 2 2 2 1 sin a 1 cos2a 2 1 cos a 1 cos2a 2 1 cos2a tg a 1 cos2a =− =+ − = + IX. Công thức chia đôi Đặt a ttg 2 = (với ) ak2≠π+ π MATHVN.COM www.MATHVN.com 2 2 2 2 2t sina 1t 1t cosa 1t 2t tga 1t = + − = + = − X. Công thức biến đổi tổng thành tích () () ab ab cosa cosb 2cos cos 22 ab ab cosa cosb 2sin sin 22 ab ab sina sin b 2cos sin 22 ab ab sina sinb 2cos sin 22 sin a b tga tgb cosacosb sin b a cotga cotgb sina.sin b +− += +− −=− +− += +− −= ± ±= ± ±= XI. Công thức biển đổi tích thành tổng () () () () ()() 1 cosa.cosb cos a b cos a b 2 1 sina.sinb cos a b cos a b 2 1 sina.cosb sin a b sin a b 2 = ⎡++ − ⎣⎦ − ⎤ = ⎡+−− ⎣⎦ ⎤ = ⎡++ −⎤ ⎣⎦ Bài 1: Chứng minh 44 66 sin a cos a 1 2 sin a cos a 1 3 +− = +− Ta có: ( ) 2 44 22 22 2 sin a cos a 1 sin a cos a 2sin acos a 1 2sin acos a+−= + − −=− 2 Và: ( ) ( ) () 66 224224 4422 22 22 22 sin a cos a 1 sin a cos a sin a sin acos a cos a 1 sin a cos a sin acos a 1 1 2sinacosa sinacosa 1 3sin acos a +−= + − + =+ − − =− − − =− − MATHVN.COM www.MATHVN.com Do đó: 44 22 66 22 sin a cos a 1 2sin acos a 2 sin a cos a 1 3sin acos a 3 +−− = = +−− Bài 2: Rút gọn biểu thức () 2 2 1cosx 1cosx A1 sinx sin x ⎡ ⎤ − + ==+ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Tính giá trò A nếu 1 cosx 2 =− và x 2 π < <π Ta có: 22 2 1cosxsinx12cosxcosx A sinx sin x ⎛⎞ ++−+ = ⎜⎟ ⎝⎠ ( ) 2 21 cosx 1cosx A. sinx sin x − + ⇔= ( ) 2 2 33 21 cosx 2sin x 2 A sin x sin x sinx − ⇔= = = (với sinx 0 ≠ ) Ta có: 22 13 sin x 1 cos x 1 44 =− =− = Do: x 2 π <<π nên sin x 0> Vậy 3 sinx 2 = Do đó 244 A sinx 3 3 === 3 Bài 3: Chứng minh các biểu thức sau đây không phụ thuộc x: a. A =− 4422 2 2cos x sin x sin xcos x 3sin x+ + b. 2cotgx1 tgx1 cotgx1 + −− B =+ a. Ta có: 4422 A 2cos x sin x sin xcos x 3sin x=−+ + 2 ( ) ( ) ( ) () 2 42 22 2 42424 A 2cos x 1 cos x 1 cos x cos x 3 1 cos x A 2cos x 1 2cos x cos x cos x cos x 3 3cos x ⇔= −− +− + − ⇔= −− + + − +− 2 A2⇔= (không phụ thuộc x) b. Với điều kiện sinx.cosx 0,tgx 1 ≠ ≠ Ta có: 2cotgx B tgx1 cotgx1 1 + =+ −− MATHVN.COM www.MATHVN.com 1 1 22 tgx B 1 tgx1 tgx11tgx 1 tgx + + ⇔= + = + −− − 1tgx − ( ) 21tgx 1tgx B1 tgx 1 tgx 1 −− − ⇔= = =− −− (không phụ thuộc vào x) Bài 4: Chứng minh () 2 22 22 222 1cosa 1cosa cosbsinc 1 cotg bcotg c cotga 1 2sina sin a sin bsin c ⎡⎤ − +− − +−= ⎢⎥ ⎢⎥ ⎣⎦ − Ta có: * 22 22 22 cos b sin c cotg b.cot g c sin b.sin c − − 2 22 22 cotg b 1 cot g bcotg c sin c sin b =−− ( ) ( ) 22 222 cot g b 1 cot g c 1 cot g b cotg bcotg c 1=+−+− =− (1) * () 2 2 1cosa 1cosa 1 2sina sin a ⎡ ⎤ − + − ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ () 2 2 1cosa 1cosa 1 2sina 1 cos a ⎡ ⎤ − + =− ⎢ ⎥ − ⎢ ⎥ ⎣ ⎦ 1cosa 1cosa 1 2sina 1 cosa +− ⎡ ⎤ =− ⎢ ⎥ + ⎣ ⎦ 1cosa2cosa .c 2sina 1 cosa + == + otga (2) Lấy (1) + (2) ta được điều phải chứng minh xong. Bài 5: Cho tùy ý với ba góc đều là nhọn. ABCΔ Tìm giá trò nhỏ nhất của P tgA.tgB.tgC = Ta có: AB C+=π− Nên: ( ) tg A B tgC+=− tgA tgB tgC 1 tgA.tgB + ⇔= − − + tgA tgB tgC tgA.tgB.tgC⇔+=−+ Vậy: P tgA.tgB.tgC tgA tgB tgC==+ MATHVN.COM www.MATHVN.com Áp dụng bất đẳng thức Cauchy cho ba số dương tg ta được A,tgB,tgC 3 tgA tgB tgC 3 tgA.tgB.tgC++≥ 3 P3P⇔≥ 32 P3 P33 ⇔≥ ⇔≥ Dấu “=” xảy ra == ⎧ π ⎪ ⇔⇔= ⎨ π << ⎪ ⎩ tgA tgB tgC ABC 3 0A,B,C 2 == Do đó: MinP 3 3 A B C 3 π =⇔=== Bài 6 : Tìm giá trò lớn nhất và nhỏ nhất của a/ 84 y2sinxcos2x=+ b/ 4 ysinxcos=−x a/ Ta có : 4 4 1cos2x y2 cos2x 2 − ⎛⎞ =+ ⎜⎟ ⎝⎠ Đặt với thì tcos2x= 1t1−≤ ≤ () 4 4 1 y1t 8 =−+ t => () 3 3 1 y' 1 t 4t 2 =− − + Ta có : Ù () y' 0= 3 3 1t 8t−= ⇔ 1t 2t−= ⇔ 1 t 3 = Ta có y(1) = 1; y(-1) = 3; 11 y 32 ⎛⎞ = ⎜⎟ ⎝⎠ 7 Do đó : và ∈ = x y3 Max ∈ = x 1 y Min 27 b/ Do điều kiện : sin và co nên miền xác đònh x 0≥ s x 0≥ π ⎡⎤ =π+π ⎢⎥ ⎣⎦ Dk2, k2 2 với ∈ k Đặt tcos= x x với thì 0t1≤≤ 42 2 tcosx1sin==− Nên 4 sin x 1 t=− Vậy 8 4 y1t=−−t trên [ ] D' 0,1= Thì () − =− < − 3 7 4 8 t y' 1 0 2. 1 t [ ) ∀∈t0;1 Nên y giảm trên [ 0, 1 ]. Vậy : ( ) ∈ = = xD max y y 0 1, ( ) ∈ = =− xD min y y 1 1 MATHVN.COM www.MATHVN.com Bài 7: Cho hàm số 44 ysinxcosx2msinxcos=+− x Tìm giá trò m để y xác đònh với mọi x Xét 44 f (x) sin x cos x 2m sin x cos x=+− () () 2 22 2 fx sinx cosx msin2x 2sinxcosx=+ − − 2 () 2 1 f x 1 sin 2x m sin 2x 2 =− − Đặt : với tsin2x= [ ] t1,∈− 1 y xác đònh x ∀ ⇔ () fx 0x R≥∀∈ ⇔ 2 1 1t [ ] mt 2 −−≥0 t1,1−∀∈ ⇔ () 2 gt t 2mt 2 0=+ −≤ [ ] t1,1− t ∀∈ Do ∀ nên g(t) có 2 nghiệm phân biệt t 2 'm 20Δ= + > m 1 , t 2 Lúc đó t t 1 t 2 g(t) + 0 - 0 Do đó : yêu cầu bài toán ⇔ 12 t11 ≤ −< ≤ ⇔ ⇔ () () 1g 1 0 1g 1 0 −≤ ⎧ ⎪ ⎨ ≤ ⎪ ⎩ 2m 1 0 2m 1 0 −−≤ ⎧ ⎨ −≤ ⎩ ⇔ 1 m 2 1 m 2 − ⎧ ≥ ⎪ ⎪ ⎨ ⎪ ≤ ⎪ ⎩ ⇔ 11 m 22 −≤ ≤ Cách khác : gt () 2 t 2mt 2 0=+ −≤ [ ] t1,∀∈− 1 { } [,] max ( ) max ( ), ( ) t gt g g ∈− ⇔≤ ⇔−≤ 11 0110 { } max ), )mm⇔−−−+≤21210 ⇔ 1 m 2 1 m 2 − ⎧ ≥ ⎪ ⎪ ⎨ ⎪ ≤ ⎪ ⎩ m⇔− ≤ ≤ 11 22 Bài 8 : Chứng minh 4444 357 A sin si n sin sin 16 16 16 16 2 π πππ =+++ 3 = Ta có : 7 sin sin cos 16 2 16 16 πππ π ⎛⎞ =−= ⎜⎟ ⎝⎠ πππ ⎛⎞ =−= ⎜⎟ ⎝⎠ 55 sin cos cos 16 2 16 16 π3 MATHVN.COM www.MATHVN.com Mặt khác : ( ) 2 44 22 2 sin cos sin cos 2sin cosα+ α= α+ α − α α 2 22 12sin cos = −αα 2 1 1sin2 2 = −α Do đó : 4444 73 A sin sin sin sin 16 16 16 16 π πππ =+++ 5 44 44 33 sin cos sin cos 16 16 16 16 ππ π ⎛⎞⎛ =+++ ⎜⎟⎜ ⎝⎠⎝ π ⎞ ⎟ ⎠ 22 11 1 sin 1 sin 28 2 8 3 π π ⎛⎞⎛ =− +− ⎜⎟⎜ ⎝⎠⎝ ⎞ ⎟ ⎠ 22 13 2sinsin 28 8 π π ⎛⎞ =− + ⎜⎟ ⎝⎠ 22 1 2sincos 28 8 π π ⎛⎞ =− + ⎜⎟ ⎝⎠ π π = ⎝⎠ 3 do sin cos 88 ⎛⎞ ⎜⎟ 13 2 22 = −= Bài 9 : Chứng minh : oooo 16 sin 10 .sin 30 .sin 50 .sin 70 1 = Ta có : o o Acos10 1 A cos10 cos10 == o (16sin10 o cos10 o )sin30 o .sin50 o .sin70 o ⇔ () oo o 11 o A 8sin20 cos40 .cos20 2 cos10 ⎛⎞ = ⎜⎟ ⎝⎠ ⇔ () 0o o 1 o A 4 sin 20 cos 20 . cos 40 cos1 0 = ⇔ () oo o 1 A 2sin40 cos40 cos1 0 = ⇔ o o oo 1cos10 A sin 80 1 cos10 cos10 === Bài 10 : Cho A BCΔ . Chứng minh : A BBCCA tg tg tg tg tg tg 1 22 22 22 + += Ta có : A BC 22 +π =− 2 Vậy : A BC tg cot g 22 + = ⇔ A B tg tg 1 22 A BC 1tg .tg tg 22 2 + = − ⇔ A BC A tg tg tg 1 tg tg 222 2 ⎡⎤ +=− ⎢⎥ ⎣⎦ B 2 MATHVN.COM www.MATHVN.com ⇔ A CBCAB tg tg tg tg tg tg 1 22 22 22 ++ = Bài 11 : Chứng minh : () πππ π ++ +=84tg 2tg tg cotg * 81632 32 Ta có : (*) ⇔ 8cotg tg 2tg 4tg 32 32 16 8 ππ π =−−− π Mà : 22 cos a sin a cos a sin a cot ga tga sin a cos a sin a cos a − −=−= cos 2a 2cotg2a 1 sin 2a 2 == Do đó : (*) ⇔ cot g tg 2tg 4tg 8 32 32 16 8 ππ π π ⎡⎤ −−− ⎢⎥ ⎣⎦ = ⇔ 2cotg 2tg 4tg 8 16 16 8 ππ π ⎡⎤ −− ⎢⎥ ⎣⎦ = ⇔ 4cotg 4tg 8 88 ππ −= ⇔ 8cotg 8 4 π = (hiển nhiên đúng) Bài :12 : Chứng minh : a/ 22 2 22 cos x cos x cos x 33 ππ ⎛⎞⎛⎞ 3 2 + ++ −= ⎜⎟⎜⎟ ⎝⎠⎝⎠ b/ 111 1 cot gx cot g16x sin 2x sin 4x sin 8x sin16x +++ =− a/ Ta có : 22 2 22 cos x cos x cos x 33 ππ ⎛⎞⎛ +++− ⎜⎟⎜ ⎝⎠⎝ ⎞ ⎟ ⎠ () 11 414 1cos2x 1cos2x 1cos 2x 22 323 ⎡ π⎤ ⎡ π ⎤ ⎛⎞ ⎛ =+ ++ + ++ − ⎜⎟ ⎜ ⎞ ⎟ ⎢ ⎥⎢ ⎝⎠ ⎝ ⎥ ⎠ ⎣ ⎦⎣ ⎦ 31 4 4 cos 2x cos 2x cos 2x 22 3 3 ⎡π ⎛⎞⎛ =+ + + + − ⎜⎟⎜ ⎢⎥ ⎝⎠⎝ ⎣⎦ π⎤ ⎞ ⎟ ⎠ 31 4 cos 2 x 2cos2x cos 22 3 π ⎡⎤ =+ + ⎢⎥ ⎣⎦ 31 1 cos2x 2cos2x 22 2 ⎡⎤ ⎛⎞ =+ + − ⎜⎟ ⎢⎥ ⎝⎠ ⎣⎦ 3 2 = b/ Ta có : cos a cosb sin b cos a sin a cos b cot ga cot gb sin a sin b sin a sin b − −=−= MATHVN.COM www.MATHVN.com [...]... − 2 o o o o o Ta có : cos12 + cos18 − 4 cos15 ( cos 21 cos 24 ) = = 2 cos15o cos 3o − 2 cos15o ( cos 45o + cos 3o ) = 2 cos15o cos 3o − 2 cos15o cos 45o − 2 cos15o cos 3o = −2 cos15o cos 45o = − ( cos 60o + cos 30o ) =− 3 +1 2 Bài 17 : Tính P = sin2 50o + sin2 70 − cos 50o cos70o 1 1 1 Ta có : P = (1 − cos100o ) + (1 − cos140o ) − ( cos120o + cos 20o ) 2 2 2 1 1⎛ 1 ⎞ P = 1 − ( cos100o + cos140o ) −... 20o = 4 2 2 4 Bài 18 : Chứng minh : tg30o + tg40o + tg50o + tg60o = sin ( a + b ) cos a cos b o o Ta có : ( tg50 + tg40 ) + ( tg30o + tg60o ) Áp dụng : tga + tgb = sin 90o sin 90o = + cos 50o cos 40o cos 30o cos 60o 1 1 = + o o 1 sin 40 cos 40 cos 30o 2 2 2 = + o sin 80 cos 30o 1 ⎞ ⎛ 1 = 2⎜ + ⎟ o cos 30o ⎠ ⎝ cos10 www.MATHVN.com 8 3 cos 20o 3 MATHVN.COM ⎛ cos 30o + cos10o ⎞ = 2⎜ o o ⎟ ⎝ cos10 cos 30 ⎠... trình cos 10x + 2 cos2 4x + 6 cos 3x cos x = cos x + 8 cos x cos3 3x ( * ) Ta có : (*) ⇔ cos10x + (1 + cos 8x ) = cos x + 2 cos x ( 4 cos3 3x − 3 cos 3x ) ⇔ ( cos10x + cos 8x ) + 1 = cos x + 2 cos x.cos 9x ⇔ 2 cos 9x cos x + 1 = cos x + 2 cos x.cos 9x ⇔ cos x = 1 ⇔ x = k2π ( k ∈ Z ) Bà i 37 : Giả i phương trình www.MATHVN.com MATHVN.COM 4 sin 3 x + 3 cos3 x − 3sin x − sin 2 x cos x = 0 ( * ) Ta có : (*)... 2 A B C Ta có : cot g , cot g , cot g là cấp số cộng 2 2 2 A C B ⇔ cot g + cot g = 2 cot g 2 2 2 A+C B sin 2 cos 2 2 = ⇔ A C B sin sin sin 2 2 2 Bài 26 : Cho ΔABC Có cot g www.MATHVN.com MATHVN.COM B 2 = ⇔ A C B sin sin sin 2 2 2 B 1 2 ⇔ (do 0 0 ) = A C A+C 2 sin sin cos 2 2 2 A C A C cos cos − sin sin 2 2 2 2 = 2 ⇔ cot g A cot g C = 3 ⇔ A C 2 2 sin sin 2 2 cos B 2 2 cos Bài 27 : Cho... = Bài 13 : Chứng minh : 8sin3 180 + 8sin2 180 = 1 Ta có: sin180 = cos720 ⇔ sin180 = 2cos2360 - 1 ⇔ sin180 = 2(1 – 2sin2180)2 – 1 ⇔ sin180 = 2(1 – 4sin2180+4sin4180)-1 ⇔ 8sin4180 – 8sin2180 – sin180 + 1 = 0 (1 ) ⇔ (sin180 – 1)(8sin3180 + 8sin2180 – 1) = 0 ⇔ 8sin3180 + 8sin2180 – 1 = 0 (do 0 < sin180 < 1) Cách khác : Chia 2 vế của (1) cho ( sin180 – 1 ) ta có ( 1 ) ⇔ 8sin2180 ( sin180 + 1 ) – 1 = 0 Bài. .. k2π ∨ x = kπ ∨ x = 6 3 Ghi chú : Khi giả i các phương trình lượ n g giá c có chứa tgu, cotgu, có ẩ n ở mẫ u , hay chứa că n bậ c chẵ n ta phả i đặ t điề u kiệ n để phương trình xác đònh Ta sẽ dù n g các cá c h sau đây để kiểm tra điều kiện xem có nhậ n nghiệm hay khô n g + Thay các giá trò x tìm đượ c vào điều kiệ n thử lạ i xem có thỏ a Hoặc + Biể u diễ n các ngọ n cung điều kiệ n và các ngọ n cung... 12x = π − 8x + k2π kπ π kπ ∨ x= + ⇔x = 2 20 10 So lạ i vớ i điề u kiệ n kπ 5kπ kπ x= thì cos 5x = cos = cos (loạ i nế u k lẻ ) 2 2 2 π kπ ⎛ π kπ ⎞ + x= thì cos 5x = cos ⎜ + ⎟ ≠ 0 nhậ n 20 10 2 ⎠ ⎝4 π kπ + Do đó : (*) ⇔ x = hπ ∨ x = , vớ i k, h ∈ 20 10 Bà i 54 : Giả i phương trình sin4 x + cos4 x 1 = ( tgx + cot g2x ) ( *) sin 2x 2 Điề u kiện : sin 2x ≠ 0 Ta có : sin 4 x + cos4 x = ( sin 2 x + cos2 x... tgx) ⇔ cot g3x = cot gx cotg3x ⇔ cos 3x = 0 ∨ sin x = cos x ⇔ cot g3x = BÀI TẬP www.MATHVN.com MATHVN.COM 1 2 3 ⎞ ⎛π Tìm cá c nghiệ m trê n ⎜ , 3π ⎟ của phương trình: ⎝3 ⎠ 5π ⎞ 7π ⎞ ⎛ ⎛ sin ⎜ 2x + ⎟ − 3 cos ⎜ x − ⎟ = 1 + 2 sin x 2 ⎠ 2 ⎠ ⎝ ⎝ ⎛ π⎞ Tìm cá c nghiệ m x trên ⎜ 0, ⎟ của phương trình ⎝ 2⎠ 2 2 sin 4x − cos 6x = sin (10, 5π + 10x ) Giả i các phương trình sau: a/ sin 3 x + cos3 x = 2 sin5 x + cos5... ⎢sin cos + sin cos ⎥ = 1 2⎣ 2 2 2 2⎦ 2⎣ 2 2 2 2⎦ A B+C A B+C + cos sin =1 ⇔ sin cos 2 2 2 2 A+B+C π = 1 ⇔ sin = 1 ( hiển nhiên đúng) ⇔ sin 2 2 Ta có : Bài 24 : Chứng minh : tg A B C 3 + cos A + cos B + cos C + tg + tg = ( *) 2 2 2 sin A + sin B + sin C Ta có : A+B A−B ⎡ C⎤ + ⎢1 − 2 sin 2 ⎥ + 3 cos 2 2 2⎦ ⎣ C A−B C 2sin cos + 4 − 2sin2 2 2 2 C⎡ A−B C⎤ − sin ⎥ + 4 2 sin ⎢cos 2⎣ 2 2⎦ C⎡ A−B A + B⎤ − cos... cos 2 2 2 + + Ta có vế trái = B C C A A B cos cos cos cos cos cos 2 2 2 2 2 2 B C B C A C A C cos cos − sin sin cos cos − sin sin 2 2 2 2 2 + 2 2 2 = B C C A cos cos cos cos 2 2 2 2 A B A B cos cos − sin sin 2 2 2 2 + A B cos cos 2 2 cos Mà : Do đó : A C A B⎤ ⎡ B C = 3 − ⎢ tg tg + tg tg + tg tg ⎥ 2 2 2 2 2⎦ ⎣ 2 A B B C A B tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 (đã chứng minh tại bài 10 ) Vế trái = 3 . sin cos 88 ⎛⎞ ⎜⎟ 13 2 22 = −= Bài 9 : Chứng minh : oooo 16 sin 10 .sin 30 .sin 50 .sin 70 1 = Ta có : o o Acos10 1 A cos10 cos10 == o (16sin10 o cos10 o )sin30 o .sin50 o .sin70 o ⇔ () oo o 11 o A 8sin20. cos40 .cos20 2 cos10 ⎛⎞ = ⎜⎟ ⎝⎠ ⇔ () 0o o 1 o A 4 sin 20 cos 20 . cos 40 cos1 0 = ⇔ () oo o 1 A 2sin40 cos40 cos1 0 = ⇔ o o oo 1cos10 A sin 80 1 cos10 cos10 === Bài 10 : Cho A BCΔ. CHƯƠNG 1: CÔNG THỨC LƯNG GIÁC I. Đònh nghóa Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M trên đường tròn lượng giác mà sđ AM = β với 02 ≤ β≤ π