1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nâng cao năng lực nhận thức cho học sinh thpt

36 1,2K 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 36
Dung lượng 852 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN TRƯỜNG THPT NGUYỄN SIÊU TRƯỜNG THPT NGUYỄN SIÊU SÁNG KIẾN KINH NGHIỆM HƯỚNG DẪN HỌC SINH THPT GIẢI BÀI TOÁN XÁC SUẤT. Người viết: Th.S Đỗ Thị Hoài Chức vụ: Phó hiệu trưởng Lĩnh vực: Toán học Đơn vị công tác: Trường THPT Nguyễn Siêu HƯNG YÊN – 3/2014 Sáng kiến kinh nghiệm Năm học 2013 - 2014 MỤC LỤC Phần I Đặt vấn đề 2 I. Lý do chọn đề tài 2 II. Giải quyết vấn đề 2 1. Cơ sở lý luận của vấn đề 2 2. Thực trạng của vấn đề 3 3. Các biện pháp đã tiến hành giải quyết vấn đề 3 Phần II Nội dung 5 I. Cơ sở lý thuyết 5 1. Biến cố và xác suất của biến cố 5 2. Các quy tắc tính xác suất 5 II. Các dạng bài tập minh họa 7 DẠNG 1: Nhận biết biến cố hợp, biến cố xung khắc, biến cố đối, biến cố giao, biến cố độc lập 7 DẠNG 2: Áp dụng các quy tắc tính xác suất 8 1. Những bài toán biến đổi công thức xác suất và tính xác suất trực tiếp 8 2. Những bài toán tính xác suất khi biết xác suất của biến cố liên quan 11 Bài tập tương tự 16 3. Những bài toán tính xác suất khi phải xác định các biến cố và không gian mẫu. 16 Phần III Hiệu quả, kết luận 27 I. Hiệu quả 27 II. Kết luận 32 1. Kết luận 32 2. Những kiến nghị 32 3. Một số vấn đề còn bỏ ngỏ 33 Tài liệu tham khảo 34 Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:1 Sáng kiến kinh nghiệm Năm học 2013 - 2014 PHẦN I: ĐẶT VẤN ĐỀ I. LÝ DO CHỌN ĐỀ TÀI Từ khi xuất hiện xác suất đã khẳng định đó là một môn mới và có tính hấp dẫn cao được áp dụng phổ biến trong cuộc sống. Xác suất được ứng dụng rộng rãi trong nhiều nghành khoa học khác nhau như Toán học, Vật lý, Khoa học và kỹ thuật, y học, công nghệ thông tin và các nghành kinh tế. Trong trường phổ thông thì đòi hỏi học sinh phải biết giải bài toán xác suất và áp dụng được vào các môn học đặc biệt là môn sinh học, vật lý Đối với học sinh phổ thông chương trình sách giáo khoa đã đưa xác suất vào dạy ở lớp 11 nên việc làm quen, áp dụng và giải các bài toán về xác suất là học sinh rất bỡ ngỡ và thấy khó. Việc giải bài toán xác suất liên quan đến đại số tổ hợp và những bài toán liên quan đến công thức xác suất là học sinh chưa phân biệt được và hay bị nhầm lẫn. Trong những năm gần đây các bài toán xác suất là một trong các chủ đề có mặt trong các kỳ thi tuyển sinh vào Đại học và Cao đẳng do Bộ Giáo dục và Đào tạo quy định ( đây là một trong các nội dung ở câu số 7 của đề thi ), chính vì thế nên tôi đã chú trọng vào việc dạy kỹ lý thuyết cho học sinh và phân dạng các loại toán xác suất từ dễ đến khó và có hệ thống móc nối giữa các kiến thức cũ và mới để học sinh có hứng thú học, say mê tìm hiểu và giải quyết được các dạng bài tập trong chương trình phổ thông. II. GIẢI QUYẾT VÂN ĐỀ 1. Cơ sở lý luận của vấn đề Xuất phát từ những bài toán trên thực tế đã hình thành nên môn xác suất chính vì thế khi bắt đầu dạy lý thuyết cho học sinh tôi cũng dùng các ví dụ cụ thể và cho học sinh tự làm ví dụ và ghi kết quả sau đó hình thành định nghĩa và liên hệ với kiến thức trong tập hợp và trong đại số tổ hợp để dần dần hình thành công thức tính xác suất đơn giản. Để có thể học tốt xác suất học sinh phải nắm vững các khái niệm cơ bản của xác suất đồng thời phải biết vận dụng các kiến thức đó để giải quyết các bài toán và tình huống cụ thể. Trên thực tế học sinh khó hiểu được các khái niệm và các Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:2 Sáng kiến kinh nghiệm Năm học 2013 - 2014 định nghĩa, trong khi sách tham khảo về nội dung này cũng không có nhiều, khai thác kỹ hơn thì học sinh lại phải đọc thêm nhiều lý thuyết ngoài sách giáo khoa. Trên thực tế đó đòi hỏi giáo viên phải có những phương pháp dạy hợp lý và phát huy tính sáng tạo của học sinh. Với mong muốn giúp học sinh nắm vững các kiến thức cơ bản về xác suất đồng thời biết vận dụng một cách linh hoạt các kiến thức đó để giải quyết nhiều tình huống khác nhau, tôi chọn đề tài: “ Nâng cao năng lực của học sinh THPT để giải bài toán xác suất ”. 2. Thực trạng của vấn đề. Xác suất là khái niệm mới và khó nên học sinh lười nghiên cứu, tuy ứng dụng thực tế của nó rất lớn nhưng học sinh học trong thời gian ngắn nên việc áp dụng thành thạo các bài tập cơ bản đối với nhiều học sinh chưa được tốt. Trong quá trình dạy phụ đạo và ôn luyện thi đại học tôi luôn quan tâm đến vấn đề này dạy cho học sinh hiểu bài không chỉ dạy lý thuyết mà phải có áp dụng đi cùng. Qua thực tiễn giảng dạy tôi nhận thấy: đa số các em chưa hiểu thấu đáo các khái niệm cơ bản như: không gian mẫu, biến cố, biến cố độc lập, biến cố xung khắc, biến cố đối,… các em chỉ biết giải bài toán xác suất trong một số kiểu bài tập quen thuộc độc lập. Đa số học sinh chưa biết sử dụng linh hoạt các quy tắc để giải quyết các tình huống cụ thể. Khi chọn đề tài này đã phần nào giúp học sinh tháo gỡ việc nhận thức học xác suất và có công cụ giải quyết được một số dạng bài tập mà từ trước đến nay học sinh cho là khó và đã áp dụng được vào các môn học liên quan. 3. Mục đích yêu cầu: - Giúp học sinh hiểu rõ các khái niệm về xác suất, liên hệ và áp dụng được vào các dạng bài tập liên quan. - Hưởng ứng phong trào tự học, tự sáng tạo, nâng cao chuyên môn, học hỏi đồng nghiệp qua đợt viết sáng kiến kinh nghiệm và nghiên cứu khoa học mà nhà trường và sở phát động. 4. Các biện pháp đã tiến hành giải quyết vấn đề. Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:3 Sáng kiến kinh nghiệm Năm học 2013 - 2014 - Phương pháp nghiên cứu lí luận: Nghiên cứu sách giáo khoa, sách tham khảo, các tài liệu liên quan khác, khai thác trên mạng … - Phương pháp quan sát: Quan sát quá trình dạy và học tại trường PTTH Nguyễn Siêu. - Phương pháp thực nghiệm sư phạm: Tổ chức dạy cho học sinh khối 11 và một số lớp 12 ôn thi đại học sau đó khảo sát các lớp dạy. Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:4 Sáng kiến kinh nghiệm Năm học 2013 - 2014 PHẦN II: NỘI DUNG I. CƠ SỞ LÝ THUYẾT 1. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ a. Phép thử ngẫu nhiên và không gian mẫu: Một phép thử ngẫu nhiên (ký hiệu T) là một thí nghiệm hay một hành động mà có thể lặp đi lặp lại nhiều lần trong các điều kiện giống nhau, kết quả của nó không dự đoán trước được và có thể xác định được tập hợp tất cả các kết quả có thể xảy ra. Tập hợp tất cả các kết quả có thể xảy ra của phép thử gọi là không gian mẫu của phép thử, ký hiệu Ω. b. Xác suất các biến cố: Định nghĩa : Giả sử phép toán thử T có không gian mẫu Ω là một tập hợp hữu hạn và kết quả của T là đồng khả năng. Nếu A là một biến cố liên quan với phép thử T và Ω A là tập hợp các kết quả mô tả A thì xác suất của A là một số ký hiệu là P(A), được xác định bởi công thức: ( ) A P A Ω = Ω trong đó A Ω và Ω lần lượt là số phần tử của tập Ω A và Ω - Biến cố chắc chắn (luôn xảy ra khi thực hiện các phép thử T) có xác suất bằng 1. - Biến cố không thể (không bao giờ xảy ra khi thực hiện phép thử T) có xác xuất bằng 0. 2. CÁC QUY TẮC TÍNH XÁC SUẤT 2.1. Quy tắc cộng xác suất a. Biến cố hợp Cho hai biến cố A và B cùng liên quan đến phép thử T. Nếu “biến cố A hoặc biến cố B xảy ra”, kí hiệu là A B∪ được gọi là hợp của hai biến A và B. Nếu kí hiệu Ω A và Ω B lần lượt là tập hợp mô tả A và B thì tập hợp mô tả biến cố A B∪ và Ω A ∪ Ω B . Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:5 Sáng kiến kinh nghiệm Năm học 2013 - 2014 Một cách tổng quát: Cho k biến cố A 1 , A 2 , …, A k cùng liên quan đến phép thử T. Biến cố “ có ít nhất một trong các biến cố A 1 , A 2 , …, A k xảy ra, ký hiệu là 1 2 k A A A∪ ∪ …∪ , được gọi là hợp của k biến cố đó. b. Biến cố xung khắc Cho hai biến cố A và B cùng liên quan đến phép thử T. Hai biến cố A và B được gọi là xung khắc nếu biến cố này xảy ra thì biến cố kia không xảy ra. Hai biến cố xung khắc nếu và chỉ nếu. Ω A ∩ Ω B = ∅ c. Quy tắc cộng xác suất Nếu hai biến cố A và B xung khắc thì xác suất để A hoặc B xảy ra là: ( ) ( ) ( ) (1)P A B P A P B∪ = + Một cách tổng quát: Cho k biến cố A 1 , A 2 , …, A k đôi một xung khắc thì ta có: 1 2 1 2 ( ) ( ) ( ) ( ) (2) k k P A A A P A P A P A∪ ∪ ∪ = + + + d. Biến cố đối Cho biến cố A thì biến cố “ Không xảy ra A”, ký hiệu là ¸A − được gọi là biến cố đối của A. Cho biến cố A xác suất của biến cố đối ¸A − là: ( ) 1 ( )P A P A − = − (3) 2.2. Quy tắc nhân xác suất a. Biến cố giao Cho hai biến cố A và B cùng liên quan đến phép thử T. Biến cố “ Cả A và B cùng xảy ra”, ký hiệu là A.B, được gọi là giao của hai biến cố A và B. Nếu Ω A và Ω B lần lượt là tập hợp các kết quả thuận lợi cho A và B thì tập hợp các kết quả thuận lợi cho AB là Ω A ∩ Ω B . Một cách tổng quát: Cho k biến cố A 1 , A 2 , …, A k cùng liên quan đến phép thử T. Biến cố “ tất cả k biến cố A 1 , A 2 , …, A k xảy ra “, ký hiệu là 1 2 k A A A… , được gọi là giao của k biến cố đó. b. Biến cố độc lập Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:6 Sáng kiến kinh nghiệm Năm học 2013 - 2014 Cho hai biến cố A và B cùng liên quan đến phép thử T. Hai biến cố A và B được gọi là độc lập với nhau nếu việc xảy ra hay không xảy ra của biến cố này không làm ảnh hưởng tới việc xảy ra hay không xảy ra của biến cố kia. c. Quy tắc nhân xác suất Nếu hai biến cố A và B xung khắc thì xác suất để A hoặc B xảy ra là: ( ) ( ). ( )P AB P A P B= Một cách tổng quát : Cho k biến cố A 1 , A 2 , …, A k độc lập thì ta có: 1 2 1 2 ( ) ( ). ( ) ( ) k k P A A A P A P A P A = II. CÁC DẠNG BÀI TẬP MINH HỌA DẠNG 1: Nhận biết biến cố hợp, biến cố xung khắc, biến cố đối, biến cố giao, biến cố độc lập Đây là bước đầu tiên xác định giả thiết trong bài toán tính xác suất, nếu không phân biệt kỹ và hiểu kỹ thì học sinh (đặc biệt là học sinh trung bình, yếu) không giải quyết được bài tập, hoặc sẽ bị nhầm lẫn khi áp dụng quy tắc tính xác suất, do đó tôi nhấn mạnh cho học sinh phân biệt được các loại biến cố bằng cách nhận biết ở dạng đơn giản trước. Bài 1: Chọn ngẫu nhiên một học sinh của lớp 11A1 trường THPT Nguyễn Siêu. Gọi A là biến cố “Bạn đó là học sinh giỏi Toán” và B là biến cố “ Bạn đó là học sinh giỏi Văn”. a. A và B có phải là hai biến cố xung khắc hay không? b. Biến cố A B∪ là gì? Hướng dẫn a. A và B là hai biến cố không xung khắc vì một học sinh có thể vừa học giỏi Toán vừa học giỏi Văn. b. Biến cố A B∪ là “ Bạn đó là học sinh giỏi Toán hoặc giỏi Văn”. Bài 2: Gieo một con súc sắc hai lần liên tiếp. Gọi A là biến cố “ lần gieo thứ nhất được số chấm trên mặt con súc sắc là chẵn”, B là biến cố “ lần gieo thứ hai được số chấm trên mặt con súc sắc là lẻ”. a. Hai biến cố A và B độc lập hay không ? b. Giao của hai biến cố A và B là biến cố gì ? Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:7 Sáng kiến kinh nghiệm Năm học 2013 - 2014 Hướng dẫn a. Hai biến cố A và B độc lập vì việc xảy ra hay không xảy ra của biến cố A không làm ảnh hưởng tới việc xảy ra hay không xảy ra của biến cố B b. Giao của hai biến cố A và B là biến cố” lần gieo thứ nhất được số chẵn và lần thứ hai được số lẻ” Nhận xét: Khi xác định các biến cố độc lập hay xung khắc thông thường học sinh hay dựa vào các khái niệm hoặc thực tế việc xảy ra của biến cố. Nhưng cũng có những bài toán xác đinh được điều đó phải dựa vào quy tắc tính xác suất, dưới đây là một ví dụ minh hoạ Bài 3: Cho 2 ( ) ; 5 P A = 5 ( ) ; 12 P B = 1 ( ) 6 P AB = . Hỏi hai biến cố A và B có: a. Xung khắc hay không? b. Độc lập với nhau hay không? Hướng dẫn a. Vì 1 ( ) 0 6 P AB = ≠ nên A và B không xung khắc. b. Vì 2 5 1 ( ) ( ) ( ) 5 12 6 P A P B P AB= × = = Vậy A và B là hai biến cố độc lập. Bài tập tương tự: Một chi tiết máy được lấy ngẫu nhiên.Chi tiết loại 1(chi tiết A);chi tiết loại 2(chi tiết B);chi tiết loại 3(chi tiết C). Hãy mô tả các biến cố sau đây: a. A B ∪ b. A B ∪ c. ( . )A B C ∪ d. .A C DẠNG 2: Áp dụng các quy tắc tính xác suất 1. Những bài toán biến đổi công thức xác suất và tính xác suất trực tiếp. Đối với học sinh THPT vì mới được học xác suất nên các em thường ít đọc sách tham khảo và có nhiều học sinh cho rằng đây là dạng bài tập khó. Trong khi áp dụng công thức thì hay bị nhầm nên thường bỏ không làm, thậm chí có học sinh không thuộc công thức để áp dụng, nên đòi hỏi giáo viên phải có biện pháp khắc phục tình trạng đó. Nhằm giúp học sinh phân biệt đựơc công thức Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:8 Sáng kiến kinh nghiệm Năm học 2013 - 2014 áp dụng và cũng thành thạo khi áp dụng tôi đã chia nhỏ, lồng ghép khéo léo dạng này để học sinh hiểu rõ hơn, chủ động và thành thạo hơn khi áp dụng, tạo động lực để học sinh có hứng thú học những dạng tiếp theo. Bài 1: Gieo một con xúc sắc, gọi A là biến cố gieo được mặt có số chấm là chẵn và B là biến cố gieo được mặt có số chấm là bội số của 2. Chứng minh rằng: ( ) ( ) ( ) ( )P A B P A P B P AB∪ = + − Hướng dẫn Ta có A = { 2, 4, 6 } , B = { 3, 6 }. Do đó { } 2,3,4,6A B∪ = và AB = {6} Nên 3 1 2 1 1 ( ) , ( ) , ( ) 6 2 6 3 6 P A P B P AB= = = = = Mà 4 2 ( ) 6 3 P A B∪ = = Vậy: 1 1 1 2 ( ) ( ) ( ) ( ) 2 3 6 3 P A P B P AB P A B+ − = + − = = ∪ . (ĐPCM) Như vậy : Nếu A và B là hai biến cố bất kỳ thì công thức sau còn đúng không? ( ) ( ) ( ) ( )P A B P A P B P AB∪ = + − Bài 2: Cho hai biến cố bất kỳ A và B. Chứng minh rằng: ( ) ( ) ( )P A P AB P AB= + Hướng dẫn Ta có ( ) ( )A AB AB= ∪ vì sự xảy ra của A là kết quả của sự xảy ra :của A và B hoặc là sự xảy ra của A và không xảy ra của B Mà AB và AB là hai biến cố xung khắc. Vậy: ( ) ( ) ( )P A P AB P AB= + Bài 3: Xét không gian mẫu E và hai biến cố xung khắc A và B biết 3 1 ( ) , ( ) 10 2 P A P B= = . Tính ( ); ( ); ( ); ( )P AB P A B P A P B∪ Hướng dẫn Vì A và B là hai biến cố xung khắc nên 8 4 ( ) 0; ( ) ( ) ( ) 10 5 P AB P A B P A P B= ∪ = + = = Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:9 [...]... phân tích bài toán để bước đầu học sinh biết tìm ra các biến cố, tìm mối quan hệ của các biến cố và tính được xác suất của biến cố theo yêu cầu Bài 1: Một lớp học gồm 40 học sinh trong đó có : 15 học sinh giỏi toán, 10 học sinh giỏi Lý và 5 học sinh giỏi Toán lẫn Lý Chọn ngẫu nhiên một học sinh Hãy tính xác suất để học sinh đó giỏi toán hay giỏi lý Hướng dẫn GV: Yêu cầu học sinh chỉ ra các biến cố, mối... phát huy được khả năng học của học sinh Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:31 Sáng kiến kinh nghiệm Năm học 2013 - 2014 II Kết luận 1 Kết luận Việc giải bài toán bài toán xác suất trong học sinh phổ thông là bài toán khó nên để tạo đựoc hứng thú cho hoc sinh cũng là rất cần thiết , mục tiêu hướng tới của tôi là tạo niềm say mê cho học sinh và để học sinh có động lực giải được các dạng... ham học và tích luỹ kiến thức biết liên hệ, vân dụng vào thực tế 2 Bài học kinh nghiệm: Người dạy luôn say mê tìm tòi để vận dung và điều chỉnh cách dạy cho phù hợp Biết được nhưng điểm yếu của học sinh về khả năng vận dụng hoặc trình bày lôgíc Áp dụng phải đúng đối tượng phù hợp với chương trình và tạo được ý thức học tập cho học sinh Thúc đẩy được các đối tượng học sinh cùng học và nghiên cứu 3 Những... chương trình THPT và ở các bộ môn có liên quan Chính vì thế đòi hỏi tôi tìm kiếm những phuơng pháp giải hay, đơn giản, và sát với nội dung học của học sinh Tôi đã mạnh dạn dạy phần này để gây hứng thú, chủ động tích cực của học sinh Đó là nhu cầu cần thiết của người học toán: - Khả năng vận dụng, khả năng liên hệ kết nối kiến thức - Khả năng tư duy và tự học - Tính sáng tạo và đổi mới, ham học và tích... là gì? Từ đó học sinh tự áp dụng công thức để tính A là biến cố học sinh giỏi toán B là biến cố học sinh giỏi lý Ta có: AB là biến cố học sinh giỏi toán và lý A ∪ B là biến cố học sinh giỏi toán hay lý 3 1 15 10 5 1 Ta có: P(A)= = 8 ; P(B)= = 4 ; P(AB)= = 40 40 40 8 3 1 1 4 1 Vậy P(A ∪ B) = P(A) + P(B) – P(AB) = 8 + 4 - = = 8 8 2 Bài 2: Chọn ngẫu nhiên một lá bài trong cỗ bài 52 lá, ghi nhận kết quả... đến36 có 25 số) do đó theo quy tắc nhân: n( A) = 6.24 = 144 P( A) = n( A) 144 1 = = n(Ω) 1296 9 Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:30 Sáng kiến kinh nghiệm Năm học 2013 - 2014 Bảng thống kê Trước khi áp dụng SKKN Từ 0 40 học sinh 11A4 39 học sinh 12A2 38 học sinh 12A3 35 học sinh điểm đến dưới điểm 11A2 điểm đến dưới 5 Lớp Từ 5 8 điểm 18 15 (45%) 19 (48.7%) Sau khi áp dụng SKKN Từ 0... chẵn Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:26 Sáng kiến kinh nghiệm Năm học 2013 - 2014 PHẦN III: HIỆU QUẢ, KẾT LUẬN I Hiệu quả : Trong những năm được phân công dạy khối 11, tôi thấy học sinh rất nản khi phải học và làm bài toán xác suất Điều đó làm tôi suy nghĩ và tôi đã tìm tòi, tham khảo đọc tài liệu để tìm ra một cách dạy cho riêng mình mà khuyến khích được học sinh học và thúc đẩy niềm... Một học sinh bắt một đề gặp được đề trung bình b) Một học sinh bắt hai đề, được ít nhất một đề trung bình Hướng dẫn a) Gọi A là biến cố Học sinh bắt được đề trung bình” C1 20 2 20 P(A) = 1 = = C30 30 3 b) Gọi B là biến cố” học sinh bắt được 1 đề trung bình và một đề khó” Gọi C là biến cố học sinh bắt được 2 đề trung bình” Gọi D là biến cố học sinh bắt hai đề, được ít nhất một đề trung bình” C1 C1... mẫu Khi phân tích công thức tính xác suất của biến cố thì đòi hỏi học sinh tìm được biến cố để xác định mối quan hệ của biến cố với các giả thiết ở bài toán Đỗ Thị Hoài – THPT Trường THPT Nguyễn Siêu Trang số:16 Sáng kiến kinh nghiệm Năm học 2013 - 2014 và nhằm đến mục đích cuối của công thức đó là tìm được không gian mẫu và không gian các kết quả thuận lợi Ở các dạng trên học sinh chỉ việc đọc kỹ và... Sáng kiến kinh nghiệm Năm học 2013 - 2014 - Những sáng kiến đạt giải cao nên được phổ biên rộng rãi để đồng nghiệp học tập 4 Một số vấn đề còn bỏ ngỏ: - Sáng kiến mới đề cập đến việc tạo động lực và giúp học sinh học và giải quyết bài toán xác suất đơn giản trong chương trình THPT - Những bài toán xác suất có điều kiện tôi chưa đề cập đến được Đó là những bài toán có ứng dụng cao trong các công việc . gì? Từ đó học sinh tự áp dụng công thức để tính. A là biến cố học sinh giỏi toán B là biến cố học sinh giỏi lý Ta có: AB là biến cố học sinh giỏi toán và lý A ∪ B là biến cố học sinh giỏi toán. giỏi toán, 10 học sinh giỏi Lý và 5 học sinh giỏi Toán lẫn Lý. Chọn ngẫu nhiên một học sinh. Hãy tính xác suất để học sinh đó giỏi toán hay giỏi lý. Hướng dẫn GV: Yêu cầu học sinh chỉ ra các biến. khác nhau, tôi chọn đề tài: “ Nâng cao năng lực của học sinh THPT để giải bài toán xác suất ”. 2. Thực trạng của vấn đề. Xác suất là khái niệm mới và khó nên học sinh lười nghiên cứu, tuy ứng

Ngày đăng: 19/12/2014, 19:42

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w