Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 39 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
39
Dung lượng
1,26 MB
Nội dung
CHUYÊN ĐỀ I: CĂN THỨC BẬC HAI Bài 1 : 1) Đơn giản biểu thức : P = 14 6 5 14 6 5+ + − . 2) Cho biểu thức : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + − + − ÷ ÷ − + + a) Rút gọn biểu thức Q. b) Tìm x để Q > - Q. c) T×m sè nguyªn x ®Ó Q cã gi¸ trÞ nguyªn. H íng dÉn : 1. P = 6 2. a) §KX§ : x > 0 ; x ≠ 1. BiÓu thøc rót gän : Q = 1 2 −x . b) Q > - Q ⇔ x > 1. c) x = { } 3;2 thì Q ∈ Z Bài 2 : Cho biểu thức P = 1 x x 1 x x + + − a) Rót gän biÓu thøc sau P. b) TÝnh gi¸ trÞ cña biÓu thøc P khi x = 1 2 . H íng dÉn : a) §KX§ : x > 0 ; x ≠ 1. BiÓu thøc rót gän : P = x x − + 1 1 . b) Với x = 1 2 thì P = - 3 – 2 2 . Bài 3 : Cho biểu thức : A = 1 1 1 1 + − − − + x x x xx a) Rút gọn biểu thức sau A. b) Tính giá trị của biểu thức A khi x = 4 1 c) Tìm x để A < 0. d) Tìm x để A = A. H íng dÉn : a) §KX§ : x ≥ 0, x ≠ 1. BiÓu thøc rót gän : A = 1−x x . b) Với x = 4 1 thì A = - 1. c) Với 0 ≤ x < 1 thì A < 0. d) Với x > 1 thì A = A. Bài 4 : Cho biu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + a) Rt gọn biu thức sau A. b) Xác định a đ biu thức A > 2 1 . Hng dn : a) KX : a > 0 v a 9. Biu thc rỳt gn : A = 3 2 +a . b) Vi 0 < a < 1 thỡ biu thc A > 2 1 . Bi 5 : Cho biu thc: A = 2 2 x 1 x 1 x 4x 1 x 2003 . x 1 x 1 x 1 x + + + ữ + . 1) Tìm điều kiện đối với x để biểu thức có nghĩa. 2) Rút gọn A. 3) Với x Z ? để A Z ? H ớng dẫn : a) ĐKXĐ : x 0 ; x 1. b) Biu thc rỳt gn : A = x x 2003+ vi x 0 ; x 1. c) x = - 2003 ; 2003 thỡ A Z . Bi 6 : Cho biu thc: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . a) Rỳt gn A. b) Tìm x để A < 0. c) Tìm x nguyên để A có giá trị nguyên. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biu thc rỳt gn : A = 1 1 + x x . b) Vi 0 < x < 1 thỡ A < 0. c) x = { } 9;4 thỡ A Z. Bi 7 : Cho biu thc: A = x 2 x 1 x 1 : 2 x x 1 x x 1 1 x + + + ữ ữ + + a) Rút gọn biểu thức A. b) Chứng minh rằng: 0 < A < 2. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biu thc rỳt gn : A = 1 2 ++ xx b) Ta xột hai trng hp : +) A > 0 1 2 ++ xx > 0 luụn ỳng vi x > 0 ; x 1 (1) +) A < 2 1 2 ++ xx < 2 2( 1++ xx ) > 2 xx + > 0 ỳng vỡ theo gt thỡ x > 0. (2) T (1) v (2) suy ra 0 < A < 2(pcm). Bi 8 : Cho biu thc: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rỳt gn P. b) Tớnh giỏ tr ca P vi a = 9. Hng dn : a) KX : a 0, a 4. Biu thc rỳt gn : P = 2 4 a b) Ta thy a = 9 KX . Suy ra P = 4 Bài 9 : Cho biu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rt gọn biu thức N. 2) Tìm giá trị ca a đ N = -2004. Hng dn : a) KX : a 0, a 1. Biu thc rỳt gn : N = 1 a . b) Ta thy a = - 2004 KX . Suy ra N = 2005. Bi 10 : Cho biu thc 3x 3x 1x x2 3x2x 19x26xx P + + + + = a. Rỳt gn P. b. Tớnh giỏ tr ca P khi 347x = c. Vi giỏ tr no ca x thỡ P t giỏ tr nh nht v tớnh giỏ tr nh nht ú. Hng dn : a ) KX : x 0, x 1. Biu thc rỳt gn : 3x 16x P + + = b) Ta thy 347x = KX . Suy ra 22 33103 P + = c) P min =4 khi x=4. Bi 11 : Cho biu thc + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rỳt gn P. b. Tỡm x 2 1 P < c. Tìm giá trị nhỏ nhất của P. Hng dn : a. ) KX : x 0, x 9. Biu thc rỳt gn : 3x 3 P + = b. Vi 9x0 < thỡ 2 1 P < c. P min = -1 khi x = 0 Bài 12: Cho A= 1 1 1 4 . 1 1 a a a a a a a + − − + + ÷ ÷ ÷ − + với x>0 ,x ≠ 1 a. Rút gọn A b. Tính A với a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ − − ( KQ : A= 4a ) Bài 13: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x − − − − − + − ÷ ÷ ÷ ÷ − + − − + với x ≥ 0 , x ≠ 9, x ≠ 4 . a. Rút gọn A. b. x= ? Thì A < 1. c. Tìm x Z ∈ để A Z∈ (KQ : A= 3 2x − ) Bài 14: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x − − + + − + − − + với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. Tìm GTLN của A. c. Tìm x để A = 1 2 d. CMR : A 2 3 ≤ . (KQ: A = 2 5 3 x x − + ) Bài 15: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + − + + − với x ≥ 0 , x ≠ 1. a . Rút gọn A. b. Tìm GTLN của A . ( KQ : A = 1 x x x+ + ) Bài 16: Cho A = 1 3 2 1 1 1x x x x x − + + + − + với x ≥ 0 , x ≠ 1. a . Rút gọn A. b. CMR : 0 1A≤ ≤ ( KQ : A = 1 x x x− + ) Bài 17: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x − − + − − − + ÷ ÷ ÷ ÷ − + − + − a. Rút gọn A. b. Tìm x Z ∈ để A Z∈ ( KQ : A = 5 3x + ) Bài 18: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a − + + − − − + − − với a ≥ 0 , a ≠ 9 , a ≠ 4. a. Rút gọn A. b. Tìm a để A < 1 c. Tìm a Z∈ để A Z∈ ( KQ : A = 1 3 a a + − ) Bài 19: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x − + + − + − − ÷ ÷ ÷ ÷ − − − − + với x > 0 , x ≠ 4. a. Rút gọn A. b. So sánh A với 1 A ( KQ : A = 9 6 x x + ) Bài20: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y − + − − ÷ + ÷ − − + với x ≥ 0 , y ≥ 0, x y≠ a. Rút gọn A. b. CMR : A ≥ 0 ( KQ : A = xy x xy y− + ) Bài 21 : Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x − + + − − + − + ÷ ÷ ÷ − + − + Với x > 0 , x ≠ 1. a. Rút gọn A. b. Tìm x để A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bài 22 : Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x − + ÷ + − ÷ ÷ ÷ − − − với x > 0 , x ≠ 4. a. Rút gọn A b. Tính A với x = 6 2 5− (KQ: A = 1 x− ) Bài 23 : Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x + − + ÷ ÷ − + − + với x > 0 , x ≠ 1. a. Rút gọn A b. Tính A với x = 6 2 5− (KQ: A = 3 2 x ) Bài 24 : Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x + + − − ÷ ÷ ÷ − + + − với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. Tìm x Z ∈ để A Z∈ (KQ: A = 3 x x − ) Bài 25: Cho A= 1 2 2 1 2 : 1 1 1 1 x x x x x x x x − − − ÷ ÷ ÷ − + − + − − với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. Tìm x Z ∈ để A Z∈ c. Tìm x để A đạt GTNN . (KQ: A = 1 1 x x − + ) Bài 26 : Cho A = 2 3 3 2 2 : 1 9 3 3 3 x x x x x x x x + − + − − ÷ ÷ ÷ ÷ − + − − với x ≥ 0 , x ≠ 9 . a. Rút gọn A. b. Tìm x để A < - 1 2 ( KQ : A = 3 3a − + ) Bài 27 : Cho A = 1 1 8 3 1 : 1 1 1 1 1 x x x x x x x x x x + − − − − − − ÷ ÷ ÷ ÷ − − − + − với x ≥ 0 , x ≠ 1. a. Rút gọn A b. Tính A với x = 6 2 5− (KQ: A = 4 4 x x + ) c . CMR : A 1≤ Bài 28 : Cho A = 1 1 1 : 1 2 1 x x x x x x + + ÷ − − − + với x > 0 , x ≠ 1. a. Rút gọn A (KQ: A = 1x x − ) b.So sánh A với 1 Bài 29 : Cho A = 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x x x x x − − − + − ÷ ÷ ÷ ÷ − − + + Với 1 0, 9 x x≥ ≠ a. Rút gọn A. b. Tìm x để A = 6 5 c. Tìm x để A < 1. ( KQ : A = 3 1 x x x + − ) Bài30 : Cho A = 2 2 2 2 1 . 1 2 2 1 x x x x x x x − + − + − ÷ ÷ − + + với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. CMR nếu 0 < x < 1 thì A > 0 c. Tính A khi x =3+2 2 d. Tìm GTLN của A (KQ: A = (1 )x x− ) Bài 31 : Cho A = 2 1 1 : 2 1 1 1 x x x x x x x x + − + + ÷ ÷ − + + − với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. CMR nếu x ≥ 0 , x ≠ 1 thì A > 0 , (KQ: A = 2 1x x+ + ) Bài 32 : Cho A = 4 1 2 1 : 1 1 1 x x x x x − − + ÷ − − + với x > 0 , x ≠ 1, x ≠ 4. a. Rút gọn b. Tìm x để A = 1 2 Bài 33 : Cho A = 1 2 3 3 2 : 1 1 1 1 x x x x x x x x + − − + − + ÷ ÷ ÷ − − − + với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. Tính A khi x= 0,36 c. Tìm x Z ∈ để A Z∈ Bài 34 : Cho A= 3 2 2 1 : 1 2 3 5 6 x x x x x x x x x + + + − + + ÷ ÷ ÷ ÷ + − − − + với x ≥ 0 , x ≠ 9 , x ≠ 4. a. Rút gọn A. b. Tìm x Z∈ để A Z∈ c. Tìm x để A < 0 (KQ: A = 2 1 x x − + ) ÔN THI HọC Kì I CHUYấN II: HM S BC NHT B i 1 : 1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành. B i 2 : Cho hm s y = (m 2)x + m + 3. 1) Tỡm iu kin ca m hm s luụn nghch bin. 2) Tỡm m th ca hm s ct trc honh ti im cú honh bng 3. B i 3 : Cho hm s y = (m 1)x + m + 3. 1) Tỡm giỏ tr ca m th ca hm s song song vi th hm s y = -2x + 1. 2) Tỡm giỏ tr ca m th ca hm s i qua im (1 ; -4). 3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m. B i 5 : Cho hàm số y = (2m 1)x + m 3. 1) Tìm m để đồ thị của hàm số đi qua điểm (2; 5) 2) Chứng minh rằng đồ thị của hàm số luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định ấy. 3) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x = 2 1 . B i 6 : Gi s ng thng (d) cú phng trỡnh y = ax + b. Xỏc nh a, b (d) i qua hai im A(1; 3) v B(-3; -1). Bi 7 Cho hm s bc nht y = (2 - a)x + a . Bit th hm s i qua im M(3;1), hm s ng bin hay nghch bin trờn R ? Vỡ sao? Bi 8: Vit phng trỡnh ng thng (d), bit (d) song song vi (d) : y = - 2x v i qua im A(2;7). Bi 9: Cho hai ng thng : (d 1 ): y = 1 2 2 x + v (d 2 ): y = 2x + a/ V (d 1 ) v (d 2 ) trờn cựng mt h trc ta Oxy. b/ Gi A v B ln lt l giao im ca (d 1 ) v (d 2 ) vi trc Ox , C l giao im ca (d 1 ) v (d 2 ) Tớnh chu vi v din tớch ca tam giỏc ABC (n v trờn h trc ta l cm)? Bi 10: Cho các đờng thẳng (d 1 ) : y = 4mx - (m+5) với m 0 (d 2 ) : y = (3m 2 +1) x +(m 2 -9) a; Với giá trị nào của m thì (d 1 ) // (d 2 ) b; Với giá trị nào của m thì (d 1 ) cắt (d 2 ) tìm toạ độ giao điểm Khi m = 2 c; C/m rằng khi m thay đổi thì đờng thẳng (d 1 ) luôn đi qua điểm cố định A ;(d 2 ) đi qua điểm cố định B . Tính BA ? Bi 11: Cho hàm số : y = ax +b a; Xác định hàm số biết đồ thị của nó song song với y = 2x +3 và đi qua điểm A(1,-2) b; Vẽ đồ thị hàm số vừa xác định - Rồi tính độ lớn góc tạo bởi đờng thẳng trên với trục Ox ? c; Tìm toạ độ giao điểm của đờng thẳng trên với đờng thẳng y = - 4x +3 ? d; Tìm giá trị của m để đờng thẳng trên song song với đờng thẳng y = (2m-3)x +2 CHUYÊN ĐỀ III: PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẦN HỆ PHƯƠNG TRÌNH BẬC NHẤT 2 ẨN . A. KIẾN THỨC CẦN NHỚ : 1. Phương trình bậc nhất : ax + b = 0. Phương pháp giải : + Nếu a ≠ 0 phương trình có nghiệm duy nhất : x = b a − . + Nếu a = 0 và b ≠ 0 ⇒ phương trình vô nghiệm. + Nếu a = 0 và b = 0 ⇒ phương trình có vô số nghiệm. 2. Hệ phương trình bậc nhất hai ẩn : =+ =+ c'y b' x a' c by ax Phương pháp giải : Sử dụng một trong các cách sau : +) Phương pháp thế : Từ một trong hai phương trình rút ra một ẩn theo ẩn kia , thế vào phương trình thứ 2 ta được phương trình bậc nhất 1 ẩn. +) Phương pháp cộng đại số : - Quy đồng hệ số một ẩn nào đó (làm cho một ẩn nào đó của hệ có hệ số bằng nhau hoặc đối nhau). - Trừ hoặc cộng vế với vế để khử ẩn đó. - Giải ra một ẩn, suy ra ẩn thứ hai. B. Ví dụ minh họa : Ví dụ 1 : Giải các phương trình sau đây : a) 2 2 x x 1 -x x = + + ĐS : ĐKXĐ : x ≠ 1 ; x ≠ - 2. S = { } 4 . b) 1 x x 1 - 2x 3 3 ++ = 2 Giải : ĐKXĐ : 1 x x 3 ++ ≠ 0. (*) Khi đó : 1 x x 1 - 2x 3 3 ++ = 2 ⇔ 2x = - 3 ⇔ x = 2 3− Với ⇔ x = 2 3− thay vào (* ) ta có ( 2 3− ) 3 + 2 3− + 1 ≠ 0 Vậy x = 2 3− là nghiệm. Ví dụ 2 : Giải và biện luận phương trình theo m : (m – 2)x + m 2 – 4 = 0 (1) + Nếu m ≠ 2 thì (1) ⇔ x = - (m + 2). + Nếu m = 2 thì (1) vô nghiệm. Ví dụ 3 : Tìm m ∈ Z để phương trình sau đây có nghiệm nguyên . (2m – 3)x + 2m 2 + m - 2 = 0. Giải : Ta có : với m ∈ Z thì 2m – 3 ≠ 0 , vây phương trình có nghiệm : x = - (m + 2) - 3 - m2 4 . để pt có nghiệm nguyên thì 4 2m – 3 . Giải ra ta được m = 2, m = 1. Ví dụ 3 : Tìm nghiệm nguyên dương của phương trình : 7x + 4y = 23. Giải : a) Ta có : 7x + 4y = 23 ⇔ y = 4 7x - 23 = 6 – 2x + 4 1 x − Vì y ∈ Z ⇒ x – 1 4. Giải ra ta được x = 1 và y = 4 BÀI TẬP PHẦN HỆ PT B ài 1 : Giải hệ phương trình: a) 2x 3y 5 3x 4y 2 − = − − + = b) x 4y 6 4x 3y 5 + = − = c) 2x y 3 5 y 4x − = + = d) x y 1 x y 5 − = + = e) 2x 4 0 4x 2y 3 + = + = − f) 2 5 2 x x y 3 1 1,7 x x y + = + + = + B ài 2 : Cho hệ phương trình : mx y 2 x my 1 − = + = 1) Giải hệ phương trình theo tham số m. [...]... 5 mỡnh vũi th hai chy bao lõu s nay b ỏp s : 8 gi Bi 13 : (trang 24): Bit rng m gam kg nc gim t0C thỡ ta nhit lng Q = mt (kcal) Hi phi dựng bao nhiờu lớt 100 0C v bao nhiờu lớt 200C c hn hp 10 lớt 400C Hng dón : x + y = 10 x = 2,5 Ta cú h pt : 100 x + 20y = 400 y = 7,5 Vy cn 2,5 lớt nc sụi v 75 lớt nc 200C Bi 14 : Khi thờm 200g axớt vo dung dch axớt thỡ dung dch mi cú nng 50% Li thờm 300g nc vo... thờm 300g nc vo dung dch mi c dung dch axớt cú nng 40% Tớnh nng axớt trong dung dch ban u Hng dón :Gi x khi axit ban u, y l khi lng dung dch ban u ( x + 200) y + 200 100 % = 50% x = 400 Theo bi ra ta cú h pt : y = 100 0 ( x + 200) 100 % = 40% y + 500 Vy nng phn trm ca dung dch axớt ban u l 40% CHUYấN IV: PHNG TRèNH BC HAI NH Lí VIET V NG DNG A.Kin thc cn ghi nh 1 bin lun s cú nghim ca phng... vo cụng thc tng 2 nghim s tỡm c nghim th 2 +) Cỏch 3: thay giỏ tr ca tham s tỡm c vo cụng thc tớch hai nghim ,t ú tỡm c nghim th 2 B BI TP P DNG Bi 1: Gii v bin lun phng trỡnh : x2 2(m + 1) +2m +10 = 0 ÔN THI HọC Kì I CHUYấN II: HM S BC NHT Bi 1 : 1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) 2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành Bi 2 : Cho hm... gi chy nhanh hn ụ tụ th hai 10 km nờn n B sm hn ụ tụ th hai 1 gi Tớnh vn tc mi xe ụ tụ Bi 12 : Mt ụ tụ d nh i t A n B vi vn tc 50 km/h Sau khi i c 2/3 quóng ng vi vn tc ú, vỡ ng khú i nờn ngi lỏi xe phi gim vn tc mi gi 10 km trờn quóng ng cũn li Do ú ụ tụ n B chm 30 phỳt so vi d nh Tớnh quóng ng AB Bi 2 : Hai vũi nc cựng chy vo b thỡ sau 4 gi 48 phỳt thỡ y Nu chy cựng mt thi gian nh nhau thỡ lng nc... tớch ca nú Tỡm th tớch ca mi bỡnh Bi 11 : Hai a im A, B cỏch nhau 56km Lỳc 6h45' mt ngi i t A vi vn tc 10km/h Sau 2h , mt ngi i xe p t B ti A vi vn tc 14km/h Hi n my gi thỡ h gp nhau, ch gp nhau cỏch A bao nhiờu km Bi 12 : Mt ca nụ xuụi t A n B vi vn tc 30km/h, sau ú ngc t B tr v A Thi gian i xuụi ớt hn thi gian i ngc l 40' Tớnh khong cỏch gia A v B Bit vn tc ca nụ khụng i, vn tc dũng nc l 3km/h Bi 13... tam giỏc ABC (n v trờn h trc ta l cm)? Bi 9: Cho hai ng thng : (d1): y = Bi 10: Cho các đờng thẳng (d1) : y = 4mx - (m+5) với m 0 (d2) : y = (3m2 +1) x +(m2 -9) a; Với giá trị nào của m thì (d1) // (d2) b; Với giá trị nào của m thì (d1) cắt (d2) tìm toạ độ giao điểm Khi m = 2 c; C/m rằng khi m thay đổi thì đờng thẳng (d1) luôn đi qua điểm cố định A ;(d2) đi qua điểm cố định B Tính BA ? Bi 11: Cho... (x1 x2)2 = S2 4p => B = x1 x 2 = S 2 4 p = 37 1 1 ( x1 + x 2 ) 2 S 2 1 + = = = x1 1 x 2 1 ( x1 1)( x 2 1) p S + 1 9 2 2 + D = (3x1 + x2)(3x2 + x1) = 9x1x2 + 3(x1 + x2 ) + x1x2 = 10x1x2 + 3 (x12 + x22) = 10p + 3(S2 2p) = 3S2 + 4p = - 1 b)Ta cú : 1 1 1 + = (theo cõu a) S= x1 1 x 2 1 9 1 1 1 = = p= ( x1 1)( x 2 1) p S + 1 9 1 1 Vy v l nghim ca hng trỡnh : x1 1 x2 1 1 1 X2 SX + p =... thay m = - 9 vo cụng trc tớnh tớch hai nghim 4 9 3 m3 21 21 21 7 = 4 = x1x2 = => x2 = : x1 = :3= 9 m 9 9 9 9 4 Bi 10: Cho phng trỡnh : x2 + 2kx + 2 5k = 0 (1) vi k l tham s 1.Tỡm k phng trỡnh (1) cú nghim kộp 2 Tim k phng trỡnh (1) cú 2 nghim x1 , x2 tho món iu kin : x12 + x22 = 10 Gii Cỏch 3: Thay m = - 1.Phng trỡnh (1) cú nghim kộp / = 0 k2 (2 5k) = 0 k2 + 5k 2 = 0 ( cú = 25 + 8 = 33... 2 cỏch gii Cỏch 1: Lp iu kin phng trỡnh (1) cú nghim: / 0 k2 + 5k 2 0 (*) Ta cú x12 + x22 = (x1 + x2)2 2x1x2 Theo bi ra ta cú (x1 + x2)2 2x1x2 = 10 b Vi iu kin(*) , ỏp dng h trc vi ột: x1 + x2 = - = - 2k v x1x2 = 2 5k a Vy (-2k)2 2(2 5k) = 10 2k2 + 5k 7 = 0 7 (Cú a + b + c = 2+ 5 7 = 0 ) => k1 = 1 , k2 = 2 i chiu vi iu kin (*) ta thay ln lt k1 , k2 vo / = k2 + 5k 2 + k1 = 1 => / = 1 +... phng trỡnh khi m = 1 2) Tỡm m phng trỡnh (*) cú 2 nghim phõn bit Bi 9 Cho phng trỡnh (2m-1)x2-2mx+1=0 Xỏc nh m phng trỡnh trờn cú nghim thuc khong (-1,0) Bi 10: Phng trỡnh: ( 2m-1)x2-2mx+1=0 Xột 2m-1=0=> m=1/2 pt tr thnh x+1=0=> x=1 Xột 2m -10= > m 1/2 khi ú ta cú , = m2-2m+1= (m-1)20 mi m=> pt cú nghim vi mi m ta thy nghim x=1 khụng thuc (-1,0) m m +1 1 vi m 1/2 pt cũn cú nghim x= = 2m 1 2m 1