1. Trang chủ
  2. » Luận Văn - Báo Cáo

ứng dụng số phức để tính tổng của các ckn

14 4,8K 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 379,5 KB

Nội dung

S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C LỜI NÓI ĐẦU Trong chương trình đổi mới nội dung Sách giáo khoa, số phức được đưa vào chương trình toán học phổ thông và được giảng dạy ở cuối lớp 12. Ta biết sự ra đời của số phức là do nhu cầu mở rộng tập hợp số, số phức là cầu nối hoàn hảo giữa các phân môn Đại số, Lượng giác, Hình học và Giải tích (thể hiện sâu sắc mối quan hệ đó là công thức 01 iπ e =+ ). Số phức là vấn đề hoàn toàn mới và khó đối với học sinh, đòi hỏi người dạy phải có tầm nhìn sâu, rộng về nó. Do những tính chất đặc biệt của số phức nên khi giảng dạy nội dung này giáo viên có nhiều hướng khai thác, phát triển bài toán để tạo nên sự lôi cuốn, hấp dẫn người học. Bằng việc kết hợp các tính chất của số phức với một số kiến thức đơn giản khác về lượng giác, giải tích, đại số và hình học giáo viên có thể xây dựng được khá nhiều dạng toán với nội dung hấp dẫn và hoàn toàn mới mẻ. Vì mới đưa vào chương trình SGK nên có rất ít tài liệu về số phức để học sinh và giáo viên tham khảo. Bên cạnh đó, lượng bài tập cũng như các dạng bài tập về số phức trong SGK còn nhiều hạn chế. Giúp học sinh có cái nhìn sâu, rộng hơn về số phức, trong quá trình giảng dạy tôi luôn tìm tòi khai thác và kết hợp các kiến thức khác về toán học để xây dựng các dạng bài tập mới cho học sinh tư duy, giải quyết. Một trong các vấn đề tôi xây dựng là dạng toán “Ứng dụng số phức để tính tổng của các k n C ” trên cơ sở khai thác tính chất của số phức và vận dụng khai triển nhị thức Newton. Để nội dung của sáng kiến kinh nghiệm này có tính thực tiễn trong công tác giảng dạy chung của nhà trường, rất mong được sự đóng góp ý kiến xây dựng và bổ xung của các đồng chí trong tổ chuyên môn và các đồng nghiệp khác. Vĩnh Yên, ngày 20 tháng 5 năm 2009 Người thực hiện Lê Hồng Thái - 1 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C NỘI DUNG CỦA ĐỀ TÀI I- MỘT SỐ VẤN ĐỀ VỀ LÝ THUYẾT: 1- Khai triển nhị thức Newton: Với mọi x và với mọi n∈N * ta có: (1 + x) n = n n C n x 1-n n C 1-n x 2 n C 2 x 1 n xC 0 n C +++++ 2- Các tính chất của số phức dùng trong đề tài: * Hai số phức z = x + iy, w = x / + iy / bằng nhau khi và chỉ khi x = x / và y = y / * z = r(cosϕ + isinϕ) ⇒ z n = [r(cosϕ + isinϕ)] n = r n (cosnϕ + isinnϕ) * Giải phương trình: x 3 – 1 = 0 Ta được các nghiệm là x 1 = 1; i 2 3 2 1 2 x +−= ; i 2 3 2 1 3 x −−= . Các nghiệm đó chính là các căn bậc ba của 1. Đăt: i 2 3 2 1 ε −−= i 2 3 2 1 2 ε +−=⇒ và ε có các tính chất sau: 1) ε + 2 ε = -1 2) 1 3 ε = 3) 1 3k ε = 4) ε 13k ε = + 5) 2 ε 23k ε = + (k – nguyên). 3- Khi nào thì dùng số phức để tính tổng của các k n C ? Đây là vấn đề lớn nhất cần chú ý cho học sinh. Ta dùng số phức để tính tổng của các k n C khi tổng này có hai đặc điểm: * Các dấu trong tổng xen kẽ đều nhau . * k luôn lẻ, hoặc luôn chẵn hoặc khi chia k cho một số ta luôn được cùng một số dư (trong chương trình phổ thông ta chỉ cho HS làm với k = 3l, k = 3l + 1, k = 3l + 2). - 2 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C 4- Các tổng của k n C được tính như thế nào ? * Khai triển (1 + x) n , cho x nhận giá trị là những số phức thích hợp (thường ta chọn là x = i). So sánh phần thực và phần ảo của cùng một số phức trong hai cách tính. * Khai triển trực tiếp các số phức (thường chỉ xét các số phức có argument là 6 π ± , 4 π ± , 3 π ± ). Sau đó so sánh phần thực và phần ảo của cùng một số phức trong hai cách tính. * Khai triển (1 + x) n , đạo hàm hai vế theo x sau đó cho x nhận giá trị là những số phức thích hợp (thường ta chọn là x = i). Sau đó so sánh phần thực và phần ảo của cùng một số phức trong hai cách tính. * Khai triển (1 + x) n , cho x nhận giá trị là các căn bậc ba của đơn vị. Cộng vế theo vế các đẳng thức thu được. Suy ra giá trị của tổng cần tìm. Điều quan trọng là phải quan sát tổng cần tìm có những đặc điểm gì để lựa chọn một trong các cách trên. Chủ yếu là căn cứ vào hệ số của các k n C trong tổng. Để nói chi tiết được điều này đòi hỏi phải có lượng lớn những nhận xét, sẽ vượt quá khuôn khổ cho phép của một đề tài sáng kiến kinh nghiệm. Tôi chỉ đưa ra một số ví dụ minh hoạ cho từng dạng, qua đó người đọc sẽ tự trả lời được câu hỏi: Để tính tổng này ta phải làm gì? II- MỘT SỐ VÍ DỤ MINH HOẠ: Dạng 1:Khai triển (1 + x) n , cho x nhận giá trị là những số phức thích hợp hoặc khai triển trực tiếp các số phức Ví dụ 1: Tính tổng A = 2008 2009 C 2006 2009 C 2004 2009 C 6 2009 C 4 2009 C 2 2009 C 0 2009 C +−++−+− - 3 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C B = 2009 2009 C 2007 2009 C 2005 2009 C 7 2009 C 5 2009 C 3 2009 C 1 2009 C −+−−+−+− Giải: Xét khai triển: (1 + x) 2009 = 2009 2009 C 2009 x 2008 2009 C 2008 x 2 2009 C 2 x 1 2009 xC 0 2009 C +++++ Cho x = - i ta có: (1 – i ) 2009 = 2009 2009 C 2009 i 2008 2009 C 2008 i 2 2009 C 2 i 1 2009 iC 0 2009 C +++++ = ( 2008 2009 C 2006 2009 C 2004 2009 C 6 2009 C 4 2009 C 2 2009 C 0 2009 C +−++−+− ) + + ( 2009 2009 2007 2009 C 2005 2009 C 7 2009 C 5 2009 3 2009 C 1 2009 C CC −+−−+−+− )i Mặt khác: =−=−+−=−                           4 2009π isin 4 2009π cos 2009 )2( 2009 4 π isin 4 π cos 2009 )2( 2009 i) (1 = i 1004 2 1004 2 2 2 i 2 2 2009 )2( 4 π isin 4 π cos 2009 )2( −=−=−               So sánh phần thực và phần ảo của (1 – i ) 2009 trong hai cách tính trên ta được: A = 2008 2009 C 2006 2009 C 2004 2009 C 6 2009 C 4 2009 C 2 2009 C 0 2009 C +−++−+− = 2 1004 B = 2009 2009 C 2007 2009 C 2005 2009 C 7 2009 C 5 2009 C 3 2009 C 1 2009 C −+−−+−+− = - 2 1004 Ví dụ 2: Tính tổng: C =       −+−−+− 50 50 C 25 3 48 50 C 24 3 46 50 C 23 3 4 50 C 2 3 2 50 3C 0 50 C 50 2 1 Giải: Xét khai triển: - 4 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C =+−++−=+−               50 50 C 50 )3(i 49 50 C 49 )3(i 2 50 C 2 )3(i 1 50 )C3(i 0 50 C 50 2 1 50 i 2 3 2 1 +−+−−+−=       50 50 50 )3( 48 50 C 48 )3( 46 50 C 46 )3( 4 50 C 4 )3( 2 50 C 2 )3( 0 50 C 50 2 1 C + i 49 50 C 49 )3( 47 50 C 47 )3( 5 50 C 5 )3( 3 50 C 3 )3( 1 50 C3 50 2 1       −++−+− Mặt khác: 2 3 i 2 1 3 100π isin 3 100π cos 50 3 2π isin 3 2π cos 50 i 2 3 2 1 −−=+=+=+−                                                 So sánh phần thực của 50 i 2 3 2 1         +− trong hai cách tính trên ta được: C = 2 1 50 50 C 25 3 48 50 C 24 3 46 50 C 23 3 4 50 C 2 3 2 50 3C 0 50 C 50 2 1 −=−+−−+−       Ví dụ 3: Tính tổng: D = 20 20 C 18 20 3C 16 20 C 2 3 6 20 C 7 3 4 20 C 8 3 2 20 C 9 3 0 20 C 10 3 +−++−+− Giải: Xét khai triển: ( ) 20 20 C 19 20 C3i 18 20 C 2 )3( 2 20 C 18 )3( 1 20 C 19 )3i( 0 20 C 20 )3( 20 i3 +−−−−+=+ = = ( 20 20 C 18 20 3C 16 20 C 2 3 6 20 C 7 3 4 20 C 8 3 2 20 C 9 3 0 20 C 10 3 +−++−+− ) + + i       −++− 19 20 C3 17 20 C 3 )3( 3 20 C 17 )3( 1 20 C 19 )3( Mặt khác: ( ) =+=+=+=+                     6 20π isin 6 20π cos 20 2 20 6 π isin 6 π cos 20 2 20 2 1 i 2 3 20 2 20 i3 i3 19 2 19 2i 2 3 2 1 20 2 3 4π isin 3 4π cos 20 2 −−=−−=+=               - 5 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C So sánh phần thực của ( ) 20 i3 + trong hai cách tính trên ta có: D = 20 20 C 18 20 3C 16 20 C 2 3 6 20 C 7 3 4 20 C 8 3 2 20 C 9 3 0 20 C 10 3 +−++−+− = - 2 19 Dạng 2: Khai triển (1 + x) n , đạo hàm hai vế theo x sau đó cho x nhận giá trị là những số phức thích hợp Ví dụ 1: Tính tổng: D = 29 30 29C 27 30 27C 25 30 25C 7 30 7C 5 30 5C 3 30 3C 1 30 C +−++−+− E = 30 30 30C 28 30 28C 26 30 26C 8 30 8C 6 30 6C 4 30 4C 2 30 2C +−++−+− Giải: (1 + x) 30 = 30 30 C 30 x 29 30 C 29 x 28 30 C 28 x 3 30 C 3 x 2 30 C 2 x 1 30 xC 0 30 C +++++++ Đạo hàm hai vế ta có: 30(1 + x) 29 = 30 30 C 29 x30 29 30 C 28 x29 28 30 C 27 x28 3 30 C 2 x3 2 30 xC2 1 30 C ++++++ Cho x = i ta có: 30(1 + i) 29 = ( 29 30 29C 27 30 27C 25 30 25C 7 30 7C 5 30 5C 3 30 3C 1 30 C +−++−+− ) + + ( 30 30 30C 28 30 28C 26 30 26C 8 30 8C 6 30 6C 4 30 4C 2 30 2C +−++−+− )i Mặt khác: 30(1 + i) 29 = ( ) ( ) =+=+             4 29π isin 4 29π cos 29 230 29 4 π isin 4 π cos 29 230 ( ) i 15 15.2 15 15.2i 2 2 2 2 29 230 −−=−−=         So sánh phần thực và ảo của 30(1 + i) 29 trong hai cách tính trên ta có: D = 29 30 29C 27 30 27C 25 30 25C 7 30 7C 5 30 5C 3 30 3C 1 30 C +−++−+− = - 15.2 15 E = 30 30 30C 28 30 28C 26 30 26C 8 30 8C 6 30 6C 4 30 4C 2 30 2C +−++−+− = - 15.2 15 - 6 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C Ví dụ 2: Tính tổng S = 20 20 C 10 20.3 18 20 C 9 18.3 6 20 C 3 6.3 4 20 C 2 4.3 2 20 2.3C −+−+− Giải: Xét khai triển: (1 + 3 x) 20 = = 20 20 C 20 x)3( 19 20 C 19 x)3( 3 20 C 3 x)3( 2 20 C 2 x)3( 1 20 x)C3( 0 20 C ++++++ Đạo hàm hai vế ta có: 20 19 x)3(13 + = = 20 20 C 19 x 10 3.20 19 20 C 18 x 19 )3.(19 3 20 C 2 x 3 )3.(3 2 20 xC3.2 1 20 C3 +++++ Cho x = i ta có: 20 19 i)3(13 + = = ( ) ( ) ( ) ( ) +−+−+−         19 20 C 19 319. 17 20 C 17 317 5 20 C 5 35. 3 20 C 3 33. 1 20 C3 i 20 20 C 10 20.3 18 20 C 9 18.3 6 20 C 3 6.3 4 20 C 2 4.3 2 20 2.3C       −+−+−+ . Mặt khác: 20 19 i)3(13 + = =+=+               19 3 π isin 3 π cos 19 .2320. 19 i 2 3 2 1 19 .2320 i 19 30.2 19 .2310.i 2 3 2 1 19 .2320. 3 19π isin 3 19π cos 19 .2320. +=+=+=               So sánh phần ảo của 20 19 i)3(13 + trong hai cách tính trên ta có: S = 20 20 C 10 20.3 18 20 C 9 18.3 6 20 C 3 6.3 4 20 C 2 4.3 2 20 2.3C −+−+− = 30.2 19 Ví dụ 3: Tính các tổng sau: M = 14 15 15C 12 15 13C 6 15 7C 4 15 5C 2 15 3C 0 15 C −++−+− N = 15 15 16C 13 15 14C 7 15 8C 5 15 6C 3 15 4C 1 15 2C −++−+− - 7 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C Giải: Xét khai triển: (1 + x) 15 = 15 15 C 15 x 14 15 C 14 x 13 15 C 13 x 3 15 C 3 x 2 15 C 2 x 1 15 xC 0 15 C +++++++ Nhân hai vế với x ta có: x(1 + x) 15 = 15 15 C 16 x 14 15 C 15 x 13 15 C 14 x 3 15 C 4 x 2 15 C 3 x 1 15 C 2 x 0 15 xC +++++++ Đạo hàm hai vế ta có: (1 + x) 15 + 15x(1 + x) 14 = 15 15 C 15 x16 14 15 C 14 x15 13 15 C 13 x14 3 15 C 3 x4 2 15 C 2 x3 1 15 xC2 0 15 C +++++++= Với x = i ta có: (1 + i) 15 + 15i(1 + i) 14 = =       −++−+− 14 15 15C 12 15 13C 6 15 7C 4 15 5C 2 15 3C 0 15 C + +       −++−+− 15 15 16C 13 15 14C 7 15 8C 5 15 6C 3 15 4C 1 15 2C i Mặt khác: (1 + i) 15 + 15i(1 + i) 14 = ( ) ( ) =+++             14 4 π isin 4 π cos 14 215i. 15 4 π isin 4 π cos 15 2 ( ) ( ) =+−−=+++=                     7 15.2i 2 2 2 2 15 2 4 14π isin 4 14π cosi 7 15.2 4 15π isin 4 15π cos 15 2 i 7 2 8 7.2i 7 2 7 14.2 7 15.2i 7 2 7 2 −=−=+−−= So sánh phần thực và ảo của (1 + i) 15 + 15i(1 + i) 14 trong hai cách tính trên ta có: M = 14 15 15C 12 15 13C 6 15 7C 4 15 5C 2 15 3C 0 15 C −++−+− = 7.2 8 N = 15 15 16C 13 15 14C 7 15 8C 5 15 6C 3 15 4C 1 15 2C −++−+− = -2 7 Dạng 3: Khai triển (1 + x) n , cho x nhận giá trị là các căn bậc ba của đơn vị Để tiện cho việc theo dõi sự biến đổi và các phép tính tôi đưa lại các vấn đề về căn bậc ba của đơn vị (đã trình bày trong phần I của đề tài): - 8 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C Giải phương trình: x 3 – 1 = 0 Ta được các nghiệm là x 1 = 1; i 2 3 2 1 2 x +−= ; i 2 3 2 1 3 x −−= . Các nghiệm đó chính là các căn bậc ba của 1. Đăt: i 2 3 2 1 ε −−= i 2 3 2 1 2 ε +−=⇒ và ε có các tính chất sau: 1) ε + 2 ε = -1 2) 1 3 ε = 3) 1 3k ε = 4) ε 13k ε = + 5) 2 ε 23k ε = + (k – nguyên). Sử dụng các tính chất trên của ε ta có thể tính được các tổng sau: Ví dụ 1: Tính tổng: S = 18 20 C 15 20 C 3k 20 C 6 20 C 3 20 C 0 20 C +++++++ Giải: Xét khai triển: (1 + x) 20 = 20 20 C 20 x 19 20 C 19 x 18 20 C 18 x 3 20 C 3 x 2 20 C 2 x 1 20 xC 0 20 C +++++++ Cho x = 1 ta có: 2 20 = 20 20 C 19 20 C 18 20 C 3 20 C 2 20 C 1 20 C 0 20 C +++++++ (1) Cho x = ε ta có: (1 + ε ) 20 = 20 20 C 2 ε 19 20 εC 18 20 C 3 20 C 2 20 C 2 ε 1 20 εC 0 20 C +++++++ (2) Cho x = 2 ε ta có: - 9 - S¸ng kiÕn kinh nghiÖm øng dông sè phøc ®Ó tÝnh tæng cña c¸c k n C (1 + 2 ε ) 20 = 20 20 εC 19 20 C 2 ε 18 20 C 3 20 C 2 20 εC 1 20 C 2 ε 0 20 C +++++++ (3) Cộng vế theo vế (1), (2) và (3) ta được: 2 20 + (1 + ε ) 20 +(1 + 2 ε ) 20 = 3S. Mặt khác: ε 40 ε 20 ) 2 ε( 20 ε)(1 ==−=+ ; 2 ε 20 ε 20 ε)( 20 ) 2 ε(1 ==−=+ Do vậy: 3S = 2 20 – 1. Hay S = 3 1 20 2 − Ví dụ 2: Tính tổng T = 19 20 C 16 20 C 13k 20 C 7 20 C 4 20 C 1 20 C +++ + ++++ Giải: Xét khai triển: (1 + x) 20 = 20 20 C 20 x 19 20 C 19 x 18 20 C 18 x 3 20 C 3 x 2 20 C 2 x 1 20 xC 0 20 C +++++++ Nhân hai vế với x 2 ta có: x 2 (1 + x) 20 = 20 20 C 22 x 19 20 C 21 x 18 20 C 20 x 3 20 C 5 x 2 20 C 4 x 1 20 C 3 x 0 20 C 2 x +++++++ Cho x = 1 ta có: 2 20 = 20 20 C 19 20 C 18 20 C 3 20 C 2 20 C 1 20 C 0 20 C +++++++ (1) Cho x = ε ta có: 2 ε (1 + ε ) 20 = 2 ε 20 20 εC 19 20 C 18 20 C 2 ε 4 20 C 3 20 C 2 ε 2 20 εC 1 20 C 0 20 C +++++++ (2) Cho x = 2 ε ta có: ε (1 + 2 ε ) 20 = ε 20 20 C 2 ε 19 20 C 18 20 εC 3 20 εC 2 20 C 2 ε 1 20 C 0 20 C +++++++ (3) Cộng vế theo vế (1), (2) và (3) ta có: 2 20 + 2 ε (1 + ε ) 20 + ε (1 + 2 ε ) 20 = 3T Mặt khác: 2 ε (1 + ε ) 20 = 1 42 ε = ; ε (1 + 2 ε ) 20 = 1 21 ε = - 10 - [...]... 10.2 − 13 3 III- MỘT SỐ BÀI TẬP: 1- Tính các tổng sau: ( ) ( ) ( ) ( ) 3 5 27 29 A = 3C1 − 3 3 C3 + 5 3 C5 − − 27 3 C27 + 29 3 C29 1 30 30 30 30 30 A = 2.3C2 − 4.32 C4 + 6.33 C6 − − 28.314 C28 + 30.315 C30 2 30 30 30 30 30 ( ) Hướng dẫn: Xét khai triển: 1+ 3x 30 Đạo hàm hai vế, cho x = i và so sánh phần thực, phần ảo của hai số phức ĐS: A1 = 15 3.229 ; A2 = - 45.229 2- Tính các tổng sau: B = C0 +... phần thực và phần ảo của hai số phức bằng nhau ĐS: B1 = 75.214 – 1; B2 = –25(1 + 3.214) 3- Tính các tổng sau: C = C0 − 3C2 + 5C4 − 7C6 + + 17C16 −19C18 + 21C20 1 20 20 20 20 20 20 20 C = 2C1 − 4C3 + 6C5 − 8C 7 + − 16C15 + 18C17 − 20C19 2 20 20 20 20 20 20 20 Hướng dẫn: Xét khai triển: ( 1 + x)20 Nhân hai vế với x Đạo hàm hai vế Cho x = i ĐS: C1 = - 11.210; C2 = - 10.210 4- Tính các tổng sau: D = 12 C1... hai vế Cho x = i ĐS: D1 = - 50.100.250; D2 = -50.250 5- Tính tổng sau: E = 2C2 + 5C5 + 8C8 + + 20C20 + 23C23 25 25 25 25 25 Hướng dẫn: Xét khai triển của (1 + x)25 Đạo hàm hai vế Sau đó nhân hai vế với x 2 Cho x lần lượt bằng 1, ε, ε 2 (ba căn bậc ba của 1) cộng vế theo vế ba đẳng thức nhận được ta tìm được E 24 ĐS: E = 25(2 − 1) 3 6 – Tính các tổng sau: F = C1 + 42 C4 + 7 2 C7 + 102 C10 + + 37 2 C37... tæng cña c¸c C n 7- Tính các tổng sau: G = C0 + 4C3 + 7C6 + 10C9 + + 34C33 + 37C36 + 40C39 1 40 40 40 40 40 40 40 G = 2C1 + 5C 4 + 8C 7 + 11C10 + + 35C34 + 38C37 + 41C 40 2 40 40 40 40 40 40 40 G = 3C 2 + 6C5 + 9C8 + 12C11 + + 36C35 + 39C38 3 40 40 40 40 40 40 Hướng dẫn: Khai triển (1 + x)40 Nhân hai vế với x Đạo hàm hai vế Để có G1 ta cho x lần lượt là 1, ε, ε 2 (ba căn bậc ba của 1) Cộng vế theo... 40 40 F = C 0 + 32 C3 + 6 2 C 6 + 9 2 C9 + + 36 2 C36 + 39 2 C39 3 40 40 40 40 40 40 Hướng dẫn: Xét khai triển của ( 1+ x)40 Đạo hàm hai vế Nhân hai vế với x Lại đạo hàm hai vế Để có F1 ta cho x lần lượt là 1, ε, ε 2 (ba căn bậc ba của 1) Cộng vế theo vế ba đẳng thức nhận được Làm thế nào để có F2, F3 mong độc giả cùng tìm tòi một chút ! ĐS: 40.41(238 −1) F = 1 3 F = 2 40(239 + 1) + 39.40(238 −1) 3...S¸ng kiÕn kinh nghiÖm k øng dông sè phøc ®Ó tÝnh tæng cña c¸c C n 20 Do vậy: 3T = 220 + 2 Hay: T = 2 + 2 3 Ví dụ 3: Tính tổng: P = C0 + 3C 3 + 6C6 + + 3kC3k + + 15C15 + 18C18 20 20 20 20 20 20 Giải: Xét khai triển: (1 + x)20 = C 0 + xC1 + x 2C 2 + x 3C3 + + x18C18 + x19C19 + x 20C 20 20 20 20 20 20 20 20 Đạo hàm hai... 39C38 3 40 40 40 40 40 40 Hướng dẫn: Khai triển (1 + x)40 Nhân hai vế với x Đạo hàm hai vế Để có G1 ta cho x lần lượt là 1, ε, ε 2 (ba căn bậc ba của 1) Cộng vế theo vế ba đẳng thức nhận được Làm thế nào để có G2, G3 mong độc giả cùng tìm tòi một chút ! ĐS: G1 = 7.240 + 13; G2 = 7.240 – 27; G3 = 7.240 + 28 - 14 - . thì dùng số phức để tính tổng của các k n C ? Đây là vấn đề lớn nhất cần chú ý cho học sinh. Ta dùng số phức để tính tổng của các k n C khi tổng này có hai đặc điểm: * Các dấu trong tổng xen. kết hợp các kiến thức khác về toán học để xây dựng các dạng bài tập mới cho học sinh tư duy, giải quyết. Một trong các vấn đề tôi xây dựng là dạng toán Ứng dụng số phức để tính tổng của các k n C ”. hai cách tính. * Khai triển trực tiếp các số phức (thường chỉ xét các số phức có argument là 6 π ± , 4 π ± , 3 π ± ). Sau đó so sánh phần thực và phần ảo của cùng một số phức trong hai cách

Ngày đăng: 22/11/2014, 10:36

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w