1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Tài liệu bồi dưỡng hình học 11 (hay)

39 3,6K 14

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 39
Dung lượng 1,38 MB

Nội dung

I. PHÉP TỊNH TIẾN1.Cho hai điểm cố định B, C trên đường tròn (O) và một điểm A thay đổi trên đường tròn đó. Tìm quĩ tích trực tâm H của ABC.HD: Vẽ đường kính BB. Xét phép tịnh tiến theo . Quĩ tích điểm H là đường tròn (O) ảnh của (O) qua phép tịnh tiến đó.2.Cho đường tròn (O; R), đường kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF.

Tài liệu bồi dưỡng Hình học 11 (hay) CHƯƠNG I: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG I. Phép tịnh tiến • v T r : M a M′ ⇔ 'MM v= uuuuur r • v T r (M) = M′, v T r (N) = N′ ⇒ ' 'M N MN= uuuuuur uuuur • v T r : M(x; y) a M′(x′; y′). Khi đó: ' ' x x a y y b  = +  = +  II. Phép đối xứng trục • Đ d : M a M′ ⇔ 0 0 'M M M M= − uuuuuur uuuuur (M 0 là hình chiếu của M trên d) • Đ d (M) = M′ ⇔ Đ d (M′) = M • Đ d (M) = M′, Đ d (N) = N′ ⇒ M′N′ = MN • Đ Ox : M(x; y) a M′(x′; y′). Khi đó: ' ' x x y y  =  = −  Đ Oy : M(x; y) a M′(x′; y′). Khi đó: ' ' x x y y  = −  =  III. Phép đối xứng tâm • Đ I : M a M′ ⇔ 'IM IM= − uuur uuur • Đ I (M) = M′ ⇔ Đ I (M′) = M • Đ I (M) = M′, Đ I (N) = N′ ⇒ ' 'M N MN= − uuuuuur uuuur • Cho I(a; b). Đ I : M(x; y) a M′(x′; y′). Khi đó: ' 2 ' 2 x a x y b y  = −  = −  Đặc biệt: Đ O : M(x; y) a M′(x′; y′). Khi đó: ' ' x x y y  = −  = −  IV. Phép quay • Q (I, α ) : M a M′ ⇔ ' ( ; ') IM IM IM IM  =  = α  • Q (I, α ) (M) = M′, Q (I, α ) (N) = N′ ⇒ M′N′ = MN • Q (I, α ) (d) = d′. Khi đó: · ( ) 0 2 , ' 2 neáu d d neáu  π α < α ≤  =  π  π−α ≤ α < π  • Q (O,90 0 ) : M(x; y) a M′(x′; y′). Khi đó: ' ' x y y x  = −  =  Q (O,–90 0 ) : M(x; y) a M′(x′; y′). Khi đó: ' ' x y y x  =  = −  V. Phép vị tự • V (I,k) : M a M′ ⇔ ' .IM k IM= uuur uuur (k ≠ 0) • V (I,k) (M) = M′, V (I,k) (N) = N′ ⇒ ' ' .M N k MN= uuuuuur uuuur • Cho I(a; b). V (I,k) : M(x; y) a M′(x′; y′). Khi đó: ' (1 ) ' (1 ) x kx k a y ky k b  = + −  = + −  Chú ý: Nếu phép dời hình (phép đồng dạng) biến ∆ ABC thành ∆ A ′ B ′ C ′ thì nó cũng biến trọng tâm, trực tâm, tâm các đường tròn nội tiếp, ngoại tiếp của 1 Hình học 11 Phan Công Trứ ∆ ABC tương ứng thành trọng tâm, trực tâm, tâm các đường tròn nội tiếp, ngoại tiếp của ∆ A ′ B ′ C ′ . I. PHÉP TỊNH TIẾN 1. Cho hai điểm cố định B, C trên đường tròn (O) và một điểm A thay đổi trên đường tròn đó. Tìm quĩ tích trực tâm H của ∆ABC. HD: Vẽ đường kính BB ′ . Xét phép tịnh tiến theo 'v B C= uuuur r . Quĩ tích điểm H là đường tròn (O ′ ) ảnh của (O) qua phép tịnh tiến đó. 2. Cho đường tròn (O; R), đường kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF. HD: Gọi H là trực tâm ∆ CEF, K là trực tâm ∆ DEF. Xét phép tịnh tiến theo vectơ v BA= uuur r . Tập hợp các điểm H vàK là đường tròn (O ′ ) ảnh của (O) qua phép tịnh tiến đó (trừ hai điểm A và A' với 'AA BA= uuur uuur ). 3. Cho tứ giác lồi ABCD và một điểm M được xác định bởi AB DM= uuur uuuur và · · CBM CDM= . Chứng minh: · · ACD BCM= . HD: Xét phép tịnh tiến theo vectơ AB uuur . 4. Cho tứ giác ABCD có µ A = 60 0 , µ B = 150 0 , µ D = 90 0 , AB = 6 3 , CD = 12. Tính độ dài các cạnh AD và BC. HD: Xét phép tịnh tiến theo vectơ BA uuur . BC = 6, AD = 6 3 . 5. Cho ∆ABC. Dựng hình vuông BCDE về phía ngoài tam giác. Từ D và E lần lượt dựng các đường vuông góc với AB, AC. Chứng minh rằng hai đường vuông góc đó với đường cao AH của ∆ABC đồng qui. HD: Xét phép tịnh tiến theo vectơ BE uuur , ∆ ABC → ∆ A ′ ED. 6. Tìm ảnh của các điểm A(0; 2), B(1; 3), C(–3; 4) qua phép tịnh tiến v T r trong các trường hợp sau: a) v r = (1; 1) b) v r = (2; 1) c) v r = (–2; 1) d) v r = (3; –2) e) v r = (0; 0) f) v r = (–3; 2) 7. Cho điểm A(1; 4). Tìm toạ độ điểm B sao cho ( ) v A T B= r trong các trường hợp sau: a) ( ) 2; 3v = − r b) v r = (2; 1) c) v r = (–2; 1) d) v r = (3; –2) e) v r = (0; 0) f) v r = (–3; 2) 8. Tìm toạ độ vectơ v r sao cho ( ) / v T M M= r trong các trường hợp sau: a) M(−10; 1), M’(3; 8) b) M(−5; 2), M′(4; −3) c) M(–1; 2), M′(4; 5) d) M(0; 0), M′(–3; 4) c) M(5; –2), M′(2; 6) f) M(2; 3), M′(4; – 5) 9. Trong mpOxy, cho đường thẳng (d) : 2x − y + 5 = 0. Tìm phương trình của đường thẳng (d’) là ảnh của (d) qua phép tịnh tiến theo v r trong các trường hợp sau: a) ( ) 4; 3v = − r b) v r = (2; 1) c) v r = (–2; 1) d) v r = (3; –2) 2 Tài liệu bồi dưỡng Hình học 11 (hay) 10. Trong mpOxy, cho đường tròn (C): ( ) ( ) 2 2 1 2 4x y− + + = . Tìm phương trình của đường tròn (C′) là ảnh của (C) qua phép tịnh tiến theo v r trong các trường hợp sau: a) ( ) 4; 3v = − r b) v r = (2; 1) c) v r = (–2; 1) d) v r = (3; –2) 11. Trong mpOxy, cho Elip (E): 2 2 1 9 4 x y + = . Tìm phương trình của elip (E′) là ảnh của (E) qua phép tịnh tiến theo v r trong các trường hợp sau: a) ( ) 4; 3v = − r b) v r = (2; 1) c) v r = (–2; 1) d) v r = (3; –2) 12. Trong mpOxy, cho Hypebol (H): 2 2 1 16 9 x y − = . Tìm phương trình của Hypebol (H′) là ảnh của (H) qua phép tịnh tiến theo v r trong các trường hợp sau: a) ( ) 4; 3v = − r b) v r = (2; 1) c) v r = (–2; 1) d) v r = (3; –2) 13. Trong mpOxy, cho Parabol (P): y 2 = 16x. Tìm phương trình của Parabol (P′) là ảnh của (P) qua phép tịnh tiến theo v r trong các trường hợp sau: a) ( ) 4; 3v = − r b) v r = (2; 1) c) v r = (–2; 1) d) v r = (3; –2) 14. Cho đường thẳng d: x + 2y – 1 = 0 và vectơ v r = (2; m). Tìm m để phép tịnh tiến v T r biến d thành chính nó. II. PHÉP ĐỐI XỨNG TRỤC 1. Cho hai điểm B, C cố định trên đường tròn (O) và một điểm A thay đổi trên đường tròn đó. Tìm quĩ tích trực tâm H của ∆ABC. HD: Gọi H ′ là giao điểm thứ hai của đường thẳng AH với (O). Xét phép đối xứng trục BC. Quĩ tích điểm H là đường tròn (O ′ ) ảnh của (O) qua phép Đ BC . 2. Cho đường thẳng d và hai điểm A, B nằm về một phía của d. Tìm trên d một điểm M sao cho tổng AM + MB có giá trị nhỏ nhất. HD: Gọi A ′ = Đ d (A). M là giao điểm của A ′ B và d. 3. Cho ∆ABC với trực tâm H. a) Chứng minh rằng các đường tròn ngoại tiếp các tam giác HAB, HBC, HCA có bán kính bằng nhau. b) Gọi O 1 , O 2 , O 3 là tâm của các đường tròn nói trên. Chứng minh rằng đường tròn đi qua 3 điểm O 1 , O 2 , O 3 có bán kính bằng bán kính đường tròn ngoại tiếp ∆ABC. 4. Cho góc nhọn xOy và một điểm A thuộc miền trong góc này. Tìm điểm B ∈ Ox, C ∈ Oy sao cho chu vi ∆ABC là bé nhất. HD: Xét các phép đối xứng trục: Đ Ox (A) = A 1 ; Đ Oy (A) = A 2 . B, C là các giao điểm của A 1 A 2 với các cạnh Ox, Oy. 5. Cho ∆ABC có các góc đều nhọn và điểm M chạy trên cạnh BC. Giả sử Đ AB (M) = M 1 , Đ AC (M) = M 2 . Tìm vị trí của M trên cạnh BC để đoạn thẳng M 1 M 2 có độ dài ngắn nhất. HD: M là chân đường cao vẽ từ A của ∆ ABC. 3 Hình học 11 Phan Công Trứ 6. Cho ∆ABC cân đỉnh A. Điểm M chạy trên BC. Kẻ MD ⊥ AB, ME ⊥ AC. Gọi D′ = Đ BC (D). Tính · 'BD M và chứng tỏ MD + ME không phụ thuộc vào vị trí điểm M. HD: · 'BD M = 1v; MD + ME = BH. 7. Tìm ảnh của các điểm sau qua phép đối xứng trục Ox: A(2; 3), B(–2; 3), C(0; 6), D(4; –3). 8. Tìm ảnh của các điểm sau qua phép đối xứng trục Oy: A(2; 3), B(–2; 3), C(0; 6), D(4; –3). 9. Tìm ảnh của điểm A(3; 2) qua phép đối xứng trục d với d: x – y = 0. 10. Tìm ảnh của các đường thẳng sau qua phép đối xứng trục Ox: a) x – 2 = 0 b) y – 3 = 0 c) 2x + y – 4 = 0 d) x + y – 1 = 0 11. Tìm ảnh của các đường thẳng sau qua phép đối xứng trục Oy: a) x – 2 = 0 b) y – 3 = 0 c) 2x + y – 4 = 0 d) x + y – 1 = 0 12. Tìm ảnh của các đường tròn sau qua phép đối xứng trục Ox: a) (x + 1) 2 + (y – 1) 2 = 9 b) x 2 + (y – 2) 2 = 4 c) x 2 + y 2 – 4x – 2y – 4 = 0 d) x 2 + y 2 + 2x – 4y – 11 = 0 13. Tìm ảnh của các đường tròn sau qua phép đối xứng trục Oy: a) (x + 1) 2 + (y – 1) 2 = 9 b) x 2 + (y – 2) 2 = 4 c) x 2 + y 2 – 4x – 2y – 4 = 0 d) x 2 + y 2 + 2x – 4y – 11 = 0 14. Tìm ảnh của các elip sau qua phép đối xứng trục Ox (Oy): a) 2 2 1 16 9 x y + = b) x 2 + 4y 2 = 1 c) 9x 2 + 16y 2 = 144 15. Tìm ảnh của các hypebol sau qua phép đối xứng trục Ox (Oy): a) 2 2 1 16 9 x y - = b) x 2 – 4y 2 = 1 c) 9x 2 – 25y 2 = 225 16. Tìm ảnh của các parabol sau qua phép đối xứng trục Ox: a) y 2 = 2x b) x 2 = 2y c) y = x 2 17. Tìm ảnh của các parabol sau qua phép đối xứng trục Oy: a) y 2 = 2x b) x 2 = 2y c) y = x 2 III. PHÉP ĐỐI XỨNG TÂM 1. Trên đường tròn (O) cho hai điểm B, C cố định và một điểm A thay đổi. Gọi H là trực tâm của ∆ABC và H′ là điểm sao cho HBH′C là hình bình hành. Chứng minh rằng H′ nằm trên đường tròn (O). Từ đó suy ra quĩ tích của điểm H. HD: Gọi I là trung điểm của BC. Đ I (H ′ ) = H ⇒ Quĩ tích điểm H là đường tròn (O ′ ) ảnh của (O) qua phép Đ I . 2. Điểm M thuộc miền trong tứ giác lồi ABCD. Gọi A′, B′, C′, D′ lần lượt là điểm đối xứng của M qua trung điểm các cạnh AB, BC, CD, DA. Chứng minh tứ giác A′B′C′D′ là hình bình hành. 4 Tài liệu bồi dưỡng Hình học 11 (hay) 3. Cho đường tròn (O, R) và một dây cố định AB = R 2 . Điểm M chạy trên cung lớn » AB thoả mãn ∆MAB có các góc đều nhọn, có H là trực tâm. AH và BH cắt (O) theo thứ tự tại A′ và B′. A′B cắt AB′ tại N. a) Chứng minh A′B′ cũng là đường kính của đường tròn (O, R). b) Tứ giác AMBN là hình bình hành. c) HN có độ dài không đổi khi M chạy như trên. d) HN cắt A′B′ tại I. Tìm tập hợp các điểm I khi M chạy như trên. HD: a) · ' 'A BB = 1v b) AM //A ′ N, BM // AN c) HN = B ′ A ′ = 2R d) Gọi J là trung điểm AB. Đ J (M) = N, Đ J (O) = O ′ . · 'OIO = 1v ⇒ Tập hợp các điểm I là đường tròn đường kính OO′. 4. Một đường thẳng đi qua tâm O của hình bình hành ABCD cắt các cạnh DC, AB tại P và Q. Chứng minh rẳng các giao điểm của các đường thẳng AP, BP, CQ, DQ với các đường chéo của hình bình hành là các đỉnh của một hình bình hành mới. HD: Xét phép Đ O . 5. Tìm ảnh của các điểm A(2; 3), B(–2; 3), C(0; 6), D(4; –3) qua phép đối xứng tâm với: a) Tâm O(0; 0) b) Tâm I(1; –2) c) Tâm H(–2; 3) 6. Tìm ảnh của các đường thẳng sau qua phép đối xứng tâm O(0; 0): a) 2x – y = 0 b) x + y + 2 = 0 c) 2x + y – 4 = 0 d) y = 2 e) x = –1 7. Tìm ảnh của các đường thẳng sau qua phép đối xứng tâm I(2; 1): a) 2x – y = 0 b) x + y + 2 = 0 c) 2x + y – 4 = 0 d) y = 2 e) x = –1 8. Tìm ảnh của các đường tròn sau qua phép đối xứng tâm I(2; 1): a) (x + 1) 2 + (y – 1) 2 = 9 b) x 2 + (y – 2) 2 = 4 c) x 2 + y 2 – 4x – 2y – 4 = 0 d) x 2 + y 2 + 2x – 4y – 11 = 0 9. Tìm ảnh của các elip sau qua phép đối xứng tâm I(1; –2): a) 2 2 1 16 9 x y + = b) x 2 + 4y 2 = 1 c) 9x 2 + 16y 2 = 144 10. Tìm ảnh của các hypebol sau qua phép đối xứng tâm I(–1; 2): a) 2 2 1 16 9 x y - = b) x 2 – 4y 2 = 1 c) 9x 2 – 25y 2 = 225 11. Tìm ảnh của các parabol sau qua phép đối xứng tâm O(0; 0): a) y 2 = 2x b) x 2 = 2y c) y = x 2 IV. PHÉP QUAY 1. Cho ∆ABC. Dựng về phía ngoài tam giác đó các tam giác BAE và CAF vuông cân tại A. Gọi I, M, J theo thứ tự là trung điểm của EB, BC, CF. Chứng minh ∆IMJ vuông cân. HD: Xét phép quay Q (A,90 0 ) . 5 Hình học 11 Phan Công Trứ 2. Cho ∆ABC. Dựng về phía ngoài tam giác đó các hình vuông ABEF và ACIK. Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc vơi FK và AM = 1 2 FK. HD: Gọi D = Đ (A) (B). Xét phép quay Q (A,90 0 ) . 3. Cho 3 điểm A, B, C thẳng hàng theo thứ tự. Lấy các đoạn thẳng AB, BC làm cạnh, dựng các tam giác đều ABE và BCF nằm cùng về một phía so với đường thẳng AB. Gọi M, N lần lượt là các trung điểm của các đoạn thẳng AF, CE. Chứng minh ∆BMN đều. HD: Xét phép quay Q (B,60 0 ) . 4. Cho ∆ABC. Lấy các cạnh của tam giác đó làm cạnh, dựng ra phía ngoài tam giác các tam giác đều ABC 1 , CAB 1 , CAB 1 . Chứng minh rằng các đoạn thẳng AA 1 , BB 1 , CC 1 bằng nhau. HD: Xét các phép quay Q (A,60 0 ) , Q (B,60 0 ) . 5. Cho ∆ABC đều tâm O. Trên các cạnh AB, AC đặt các đoạn thẳng AD, AE sao cho AD + AE = AB. Chứng minh rằng OD = OE và · DOE = 120 0 . HD: Xét phép quay Q (O,120 0 ) . 6. Cho hình vuông ABCD và điểm M trên cạnh AB. Đường thẳng qua C vuông góc với CM, cắt AB và AD tại E và F. CM cắt AD tại N. Chứng minh rằng: a) CM + CN = EF b) 2 2 2 1 1 1 CM CN AB + = HD: Xét phép quay Q (C,90 0 ) . 7. Cho ∆ABC. Dựng về phía ngoài tam giác các hình vuông ABDE và ACIJ sao cho C và D nằm khác phía với AB. Chứng minh giao điểm của BI và CD nằm trên đường cao AH của ∆ABC. HD: Lấy trên tia đối của AH một đoạn AK = BC. Gọi O là tâm hình vuông ACIJ. Xét phép quay Q (O,90 0 ) ⇒ IB ⊥ CK. Tương tự CD ⊥ BK. 8. Tìm ảnh của các điểm A(2; 3), B(–2; 3), C(0; 6), D(4; –3) qua phép quay tâm O góc α với: a) α = 90 0 b) α = –90 0 c) α = 180 0 9. Tìm ảnh của các đường thẳng sau qua phép quay tâm O góc 90 0 : a) 2x – y = 0 b) x + y + 2 = 0 c) 2x + y – 4 = 0 d) y = 2 e) x = –1 10. Tìm ảnh của các đường tròn sau qua phép quay tâm O góc 90 0 : a) (x + 1) 2 + (y – 1) 2 = 9 b) x 2 + (y – 2) 2 = 4 c) x 2 + y 2 – 4x – 2y – 4 = 0 d) x 2 + y 2 + 2x – 4y – 11 = 0 V. PHÉP VỊ TỰ 1. Cho ∆ABC với trọng tâm G, trực tâm H và tâm đường tròn ngoại tiếp O. Chứng minh ba điểm G, H, O thẳng hàng và 2GH GO= − uuur uuur . HD: Xét phép vị tự V (G,–2) (O) = H. 6 Tài liệu bồi dưỡng Hình học 11 (hay) 2. Tam giác ABC có hai đỉnh B, C cố định, còn đỉnh A chạy trên một đường tròn (O). Tìm quĩ tích trọng tâm G của ∆ABC. HD: Gọi I là trung điểm của BC. Xét phép vị tự 1 ( , ) 3 I V (A) = G. 3. Cho đường tròn (O) có đường kính AB. Gọi C là điểm đối xứng của A qua B, PQ là một đường kính thay đổi của (O). Đường thẳng CQ cắt PA và PB lần lượt tại M và N. a) Chứng minh rằng Q là trung điểm của CM, N là trung điểm của CQ. b) Tìm quĩ tích của M và N khi đường kính PQ thay đổi. HD: a) Sử dụng tính chất đường trung bình. b) Xét các phép vị tự V (C,2) (Q) = M; 1 ( , ) 2 C V (Q) = N. 4. Cho đường tròn (O, R) và đường thẳng d không có điểm chung với đường tròn. Từ một điểm M bất kì trên d, kẻ các tiếp tuyến MP, MQ với đường tròn (O). a) Chứng minh PQ luôn đi qua một điểm cố định. b) Tìm tập hợp trung điểm K của PQ, tâm O′ của đường tròn ngoại tiếp ∆MPQ, trực tâm H của ∆MPQ. HD: a) Kẻ OI ⊥ d, OI cắt PQ tại N. 2 .OI ON r= uur uuur ⇒ N cố định. b) Tập hợp các điểm K là đường tròn (O 1 ) đường kính NO. Tập hợp các điểm O ′ đường trung trực đoạn OI. Tập hợp các điểm H là đường tròn (O 2 ) = V (O,2) . 5. Cho điểm A ở ngoài đường tròn (O, R) và đường kính MN quay xung quanh tâm O. AM và AN cắt đường tròn (O) tại B và C. a) Chứng minh đường tròn (AMN) luôn đi qua một điểm cố định khác A. b) Chứng minh BC luôn đi qua một điểm cố định. c) Tìm tập hợp trung điểm I của BC và trọng tâm G của ∆ABC. HD: a) AO cắt (AMN) tại D. 2 . .OA OD OM ON R= = − uuur uuur uuuur uuur ⇒ D cố định. b) AO cắt BC tại E. 2 2 .AE AD AO R= − uuur uuur ⇒ E cố định. c) Tập hợp các điểm I là đường tròn (O 1 ) đường kính EO. Tập hợp các điểm G là đường tròn (O 2 ) = 2 ( , ) 3 A V (O 1 ). 6. Cho đường tròn (O, R), đường kính AB. Một đường thẳng d vuông góc với AB tại một điểm C ở ngoài đường tròn. Một điểm M chạy trên đường tròn. AM cắt d tại D, CM cắt (O) tại N, BD cắt (O) tại E. a) Chứng minh AM.AD không phụ thuộc vào vị trí của điểm M. b) Tứ giác CDNE là hình gì? c) Tìm tập hợp trọng tâm G của ∆MAC. HD: a) AM.AD = AB.AC (không đổi) b) NE // CD ⇒ CDNE là hình thang. c) Gọi I là trung điểm AC. Kẻ GK // MO. Tập hợp các điểm G là đường tròn (K, 3 R ) ảnh của đường tròn (O, R) qua phép 1 ( , ) 3 I V . 7. Tìm ảnh của các điểm sau qua phép vị tự tâm I(2; 3), tỉ số k = –2: A(2; 3), B(– 3; 4), C(0; 5), D(3; 0), O(0; 0). 7 Hình học 11 Phan Công Trứ 8. Tìm ảnh của các điểm sau qua phép vị tự tâm I(2; 3), tỉ số k = 1 2 : A(2; 3), B(– 3; 4), C(0; 5), D(3; 0), O(0; 0). 9. Phép vi tự tâm I tỉ số 1 2 k = biến điểm M thành M’. Tìm toạ độ của điểm I trong các trường hợp sau: a) M(4; 6) và M’(–3; 5). b) M(2; 3) và M′(6; 1) c) M(–1; 4) và M′(–3; – 6) 10. Phép vị tự tâm I tỉ số k biến điểm M thành M’. Tìm k trong các trường hợp sau: a) I(–2; 1), M(1; 1), M’(–1; 1). b) I(1; 2), M(0; 4) và M′(2; 0) c) I(2; –1), M(–1; 2), M′(–2; 3) 11. Tìm ảnh của các đường thẳng sau qua phép vị tự tâm O(0; 0) tỉ số k = 2: a) x + 2y – 1 = 0 b) x – 2y + 3 = 0 c) y – 3 = 0 d) x + 4 = 0 12. Tìm ảnh của đường thẳng d: x – 2y + 1 = 0 qua phép vị tự tâm I(2; 1) tỉ số k trong các trường hợp sau: a) k = 1 b) k = 2 c) k = – 1 d) k = – 2 e) k = 1 2 f) k = 1 2 − 13. Trong mặt phẳng Oxy, cho hai đường thẳng ∆ 1 : x – 2y + 1 = 0 và ∆ 2 : x – 2y + 4 = 0 và điểm I(2; 1). Tìm tỉ số k để phép vị tự V (I,k) biến ∆ 1 thành ∆ 2 . 14. Tìm ảnh của các đường tròn sau qua phép vị tự tâm O(0; 0) tỉ số k = 2: a) 2 2 ( 1) ( 5) 4x y- + - = b) 2 2 ( 2) ( 1) 9x y+ + + = c) x 2 + y 2 = 4 15. Tìm ảnh của đường tròn (C): (x + 1) 2 + (y – 3) 2 = 9 qua phép vị tự tâm I(2; 1) tỉ số k trong các trường hợp sau: a) k = 1 b) k = 2 c) k = – 1 d) k = – 2 e) k = 1 2 f) k = 1 2 − 16. Xét phép vị tự tâm I(1; 0) tỉ số k = 3 biến đường tròn (C) thành (C′). Tìm phương trình của đường tròn (C) nếu biết phương trình đường tròn (C′) là: a) 2 2 ( 1) ( 5) 4x y- + - = b) 2 2 ( 2) ( 1) 9x y+ + + = c) 2 2 1x y+ = ÔN TẬP CHƯƠNG I 1. Cho hình bình hành ABCD có CD cố định, đường chéo AC = a không đổi. Chứng minh rằng khi A di động thì điểm B di động trên một đường tròn xác định. 2. Cho 2 điểm A, B cố định thuộc đường tròn (C) cho trước. M là một điểm di động trên (C) nhưng không trùng với A và B. Dựng hình bình hành AMBN. Chứng minh rằng tập hợp các điểm N là một đường tròn. 8 Tài liệu bồi dưỡng Hình học 11 (hay) 3. Cho nửa đường tròn tâm O đường kính AB. Một điểm C chạy trên nửa đường tròn đó. Dựng về phía ngoài tam giác ABC hình vuông CBEF. Chứng minh điểm E chạy trên một nửa đường tròn cố định. 4. Cho hình vuông ABCD có tâm I. Trên tia BC lấy điểm E sao cho BE = AI. a) Xác định một phép dời hình biến A thành B, I thành E. b) Dựng ảnh của hình vuông ABCD qua phép dời hình ấy. 5. Cho hai đường tròn (O; R) và (O′; R′). Xác định các tâm vị tự của hai đường tròn nếu R′ = 2R và OO′ = 3 2 R. 6. Cho v r = (–2; 1), các đường thẳng d: 2x – 3y + 3 = 0, d 1 : 2x – 3y – 5 = 0. a) Viết phương trình đường thẳng d′ = v T r (d). b) Tìm toạ độ vectơ u r vuông góc với phương của d sao cho d 1 = u T r (d). 7. Cho đường tròn (C): x 2 + y 2 – 2x + 4y – 4 = 0. Tìm (C′) = v T r (C) với v r = (–2; 5). 8. Cho M(3; –5), đường thẳng d: 3x + 2y – 6 = 0 và đường tròn (C): x 2 + y 2 – 2x + 4y – 4 = 0. a) Tìm ảnh của M, d, (C) qua phép đối xứng trục Ox. b) Tìm ảnh của d và (C) qua phép đối xứng tâm M. 9. Tìm điểm M trên đường thẳng d: x – y + 1 = 0 sao cho MA + MB là ngắn nhất với A(0; –2), B(1; –1). 10. Viết phương trình đường tròn là ảnh của đường tròn tâm A(–2; 3) bán kính 4 qua phép đối xứng tâm, biết: a) Tâm đối xứng là gốc toạ độ O b) Tâm đối xứng là điểm I(–4; 2) 11. Cho đường thẳng d: x + y – 2 = 0. Viết phương trình của đường thẳng d′ là ảnh của đường thẳng d qua phép quay tâm O góc quay α, với: a) α = 90 0 b) α = 40 0 . 12. Cho v r = (3; 1) và đường thẳng d: y = 2x. Tìm ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc 90 0 và phép tịnh tiến theo vectơ v r . 13. Cho đường thẳng d: y = 2 2 . Viết phương trình đường thẳng d′ là ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = 1 2 và phép quay tâm O góc 45 0 . 14. Cho đường tròn (C): (x – 2) 2 + (y – 1) 2 = 4. Viết phương trình đường tròn (C′) là ảnh của (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = – 2 và phép đối xứng qua trục Oy. 15. Xét phép biến hình F biến mỗi điểm M(x; y) thành điểm M′(–2x + 3; 2y – 1). Chứng minh F là một phép đồng dạng. ================= CHƯƠNG II: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN 9 Hình học 11 Phan Công Trứ QUAN HỆ SONG SONG I. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN 1. Xác định một mặt phẳng • Ba điểm không thẳng hàng thuộc mặt phẳng. (mp(ABC), (ABC)) • Một điểm và một đường thẳng không đi qua điểm đó thuộc mặt phẳng. (mp(A,d)) • Hai đường thẳng cắt nhau thuộc mặt phẳng. (mp(a, b)) 2. Một số qui tắc vẽ hình biểu diễn của hình không gian • Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng. • Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau. • Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng. • Đường nhìn thấy vẽ nét liền, đường bị che khuất vẽ nét đứt. VẤN ĐỀ 1: Tìm giao tuyến của hai mặt phẳng Muốn tìm giao tuyến của hai mặt phẳng ta có thể tìm hai điểm chung phân biệt của hai mặt phẳng. Khi đó giao tuyến là đường thẳng đi qua hai điểm chung đó. 1.Cho hình chóp S.ABCD. Đáy ABCD có AB cắt CD tại E, AC cắt BD tại F. a) Tìm giao tuyến của các cặp mặt phẳng (SAB) và (SCD), (SAC) và (SBD). b) Tìm giao tuyến của (SEF) với các mặt phẳng (SAD), (SBC). 2. Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O. M, N, P lần lượt là trung điểm của BC, CD, SO. Tìm giao tuyến của mp(MNP) với các mặt phẳng (SAB), (SAD), (SBC) và (SCD). 3. Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của AC và BC. K là một điểm trên cạnh BD sao cho KD < KB. Tìm giao tuyến của mp(IJK) với (ACD) và (ABD). 4. Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của AD và BC. a) Tìm giao tuyến của 2 mặt phẳng (IBC) và (JAD). b) M là một điểm trên cạnh AB, N là một điểm trên cạnh AC. Tìm giao tuyến của 2 mặt phẳng (IBC) và (DMN). 5. Cho tứ diện (ABCD). M là một điểm bên trong ∆ABD, N là một điểm bên trong ∆ACD. Tìm giao tuyến của các cặp mặt phẳng (AMN) và (BCD), (DMN) và (ABC). VẤN ĐỀ 2: Tìm giao điểm của đường thẳng và mặt phẳng Muốn tìm giao điểm của một đường thẳng và một mặt phẳng ta có thể tìm giao điểm của đường thẳng đó với một đường thẳng nằm trong mặt phẳng đã cho. 10 [...]... xác định thiết diện của hình chóp tạo bởi mặt phẳng song song với một hoặc hai đường thẳng cho trước 1 Cho hình chóp S.ABCD M, N là hai điểm trên AB, CD Mặt phẳng (P) qua MN và song song với SA 16 Tài liệu bồi dưỡng Hình học 11 (hay) a) Tìm các giao tuyến của (P) với (SAB) và (SAC) b) Xác định thiết diện của hình chóp với mặt phẳng (P) c) Tìm điều kiện của MN để thiết diện là hình thang HD: c) MN //... d) x = 1− k + 1− k (0 < k < 1) k 6.Cho hình chóp S.ABCD, có đáy ABCD là hình vng cạnh a, tâm O SA = SB = SC = SD = a Gọi M là một điểm trên đoạn AO (P) là mặt phẳng qua M và song song với AD và SO Đặt AM = k (0 < k < 1) AO a) Chứng minh thiết diện của hình chóp với (P) là hình thang cân b) Tính các cạnh của thiết diện theo a và k 22 Tài liệu bồi dưỡng Hình học 11 (hay) c) Tìm k để thiết diện trên ngoại... hành Gọi I, J lần lượt là trọng tâm của các tam giác SAB, SAD M là trung điểm của CD Xác định thiết diện của hình chóp với mặt phẳng (IJM) 3.Cho hình chóp S.ABCD, có đáy là hình thang với các đáy AD = a, BC = b Gọi I, J lần lượt là trọng tâm các tam giác SAD, SBC 14 Tài liệu bồi dưỡng Hình học 11 (hay) a) Tìm đoạn giao tuyến của (ADJ) với mặt (SBC) và đoạn giao tuyến của (BCI) với mặt (SAD) b) Tìm độ... điểm di động trên (P) sao cho SABC là hình chóp có 2 mặt bên SAB, SAC hợp với đáy ABC hai góc có số đo lần lượt 34 Tài liệu bồi dưỡng Hình học 11 (hay) là α và π − α Gọi H, I, J lần lượt là hình chiếu vng góc của S trên BC, AB, 2 AC a) Chứng minh rằng: SH2 = HI.HJ b) Tìm giá trị lớn nhất của SH và khi đó hãy tìm giá trị của α HD: 17 19 1 c bc ; α = arctan 2 b Cho hình tứ diện ABCD có AB = BC = a, AC... để (MNPQ) // (A′BC′) c) Dựng thiết diện của hình lập phương cắt bởi (MNPQ) Thiết diện có đặc điểm gì? Tính giá trị lớn nhất và nhỏ nhất của chu vi thiết diện HD: a) MP và NQ cắt nhau tại tâm O của hình lập phương b) (MNPQ) đi qua trung điểm R, S của BC và A′D′ x = c) Thiết diện là lục giác MRNPSQ có tâm đối xứng là O 20 a 2 Tài liệu bồi dưỡng Hình học 11 (hay) Chu vi nhỏ nhất: 3a 2 ; chu vi lớn nhất:... HD: b) Thiết diện là tứ giác c) Tìm (AGM)∩(SAC) Thiết diện là tứ giác 12 Tài liệu bồi dưỡng Hình học 11 (hay) 7.Cho hình chóp S.ABCD, M là một điểm trên cạnh BC, N là một điểm trên cạnh SD a) Tìm giao điểm I của BN và (SAC) và giao điểm J của MN và (SAC) b) DM cắt AC tại K Chứng minh S, K, J thẳng hàng c) Xác định thiết diện của hình chóp S.ABCD với mặt phẳng (BCN) HD: a) Gọi O=AC∩BD thì I=SO∩BN, J=AI∩MN... trước hình chóp SABCD, có đáy là hình vng tâm O SA ⊥ (ABCD) Gọi H, I, K lần lượt là hình chiếu vng góc của A trên SB, SC, SD a) CMR: BC ⊥ (SAB), CD ⊥ (SAD), BD ⊥ (SAC) b) CMR: AH, AK cùng vng góc với SC Từ đó suy ra 3 đường thẳng AH, AI, AK cùng nằm trong một mặt phẳng c) CMR: HK ⊥ (SAC) Từ đó suy ra HK ⊥ AI 7.Cho tứ diện SABC có tam giác ABC vng tại B; SA ⊥ (ABC) 6.Cho 28 Tài liệu bồi dưỡng Hình học 11. .. a) IJ song song với mp qua AB và song song CD b) Tập hợp điểm M là đoạn EF với E, F là các điểm chia AB, CD theo tỉ số k 3.Cho hình chóp S.ABCD, có đáy là hình bình hành tâm O Gọi M, N lần lượt là trung điểm của SA và CD a) CMR: (OMN) // (SBC) 18 Tài liệu bồi dưỡng Hình học 11 (hay) b) Gọi I là trung điểm của SD, J là một điểm trên (ABCD) và cách đều AB, CD Chứng minh IJ song song (SAB) c) Giả sử hai... x); S lớn nhất khi x = a 2 hình tứ diện SABC với ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = a Tìm thiết diện của tứ diện với mặt phẳng (P) và tính diện tích thiết diện trong các trường hợp sau: a) (P) qua S và vng góc với BC b) (P) qua A và vng góc với trung tuyến SI của tam giác SBC c) (P) qua trung điểm M của SC và vng góc với AB 9.Cho 30 Tài liệu bồi dưỡng Hình học 11 (hay) HD: 10 a) a2 3 4 b)... Muốn tìm góc giữa hai mặt phẳng (P) và (Q) ta có thể sử dụng một trong các cách sau: 32 Tài liệu bồi dưỡng Hình học 11 (hay) · ¶ • Tìm hai đường thẳng a, b: a ⊥ (P), b ⊥ (Q) Khi đó: ( (P ),(Q) ) = ( a, b )  a ⊂ ( P ), a ⊥ c · ¶ • Giả sử (P) ∩ (Q) = c Từ I ∈ c, dựng b ⊂ (Q), b ⊥ c ⇒ ( (P ),(Q) ) = ( a, b )  7.Cho hình chóp SABC, có đáy ABC là tam giác vng cân với BA = BC = a; SA ⊥ (ABC) và SA = a Gọi . của hình chóp với (CGM). c) Tìm thiết diện của hình chóp với (AGM). HD: b) Thiết diện là tứ giác c) Tìm (AGM) ∩ (SAC). Thiết diện là tứ giác. 12 Tài liệu bồi dưỡng Hình học 11 (hay) 7.Cho hình. của hình chóp với mặt phẳng (IJM). 3.Cho hình chóp S.ABCD, có đáy là hình thang với các đáy AD = a, BC = b. Gọi I, J lần lượt là trọng tâm các tam giác SAD, SBC. 14 Tài liệu bồi dưỡng Hình học 11. theo tỉ số k. 3.Cho hình chóp S.ABCD, có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD. a) CMR: (OMN) // (SBC). 18 Tài liệu bồi dưỡng Hình học 11 (hay) b) Gọi I là trung

Ngày đăng: 04/09/2014, 20:59

TỪ KHÓA LIÊN QUAN

w