1. Trang chủ
  2. » Giáo Dục - Đào Tạo

SÁNG KIẾN KINH NGHIỆM DẠY HỌC MÔN TOÁN CẤP 3 potx

10 1,2K 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 187,42 KB

Nội dung

SÁNG KIẾN KINH NGHIỆM DẠY HỌC MÔN TOÁN CẤP 3 I.. LÝ DO CHỌN ĐỀ TÀI Ta đã biết rằng bài toán tìm điều kiện về tính chất nghiên cứu phương trình, bất phương trình thường xuất hiện trong c

Trang 1

SÁNG KIẾN KINH NGHIỆM DẠY HỌC MÔN TOÁN CẤP 3

I LÝ DO CHỌN ĐỀ TÀI

Ta đã biết rằng bài toán tìm điều kiện về tính chất nghiên cứu phương trình, bất phương trình thường xuất hiện trong các kỳ thi đại học và khi chương sách giáo khoa bỏ định lý đảo về dấu tam thức bậc hai thì bài toán thuộc tuyến truên mất đi một công cụ để giải Tuy nhiên nếu phân tích vấn đề một cách cẩn thận thì tuyến vẫn đề đó có thể giải quyết bằng phương pháp cực trị tương đối hiệu quả

Và thực tế giải bằng phương pháp cực trị cho lời giải rõ ràng, ngắn gọn hơn Mặt khác hướng dẫn học sinh bằng phương pháp đó phát triển cho học sinh nhiều phẩm chất tư duy như phát triển tương khái quát hoá, tư duy hàm, tư duy phân tích tổng hợp… từ việc phân tích ở trên tôi quyết định chọn đề tài nghiên cứu “Sử dụng phương pháp cục trị để xét phương trình, bất phương trình”

II NỘI DUNG NGHIÊN CỨU

A Lý thuyết

1 Phương trình f(x) = m có nghiệm trên D

 min f(x) m max f(x)

D

2 Bất phương trình f(x)  m có nghiệm trên D

<=> m max f(x)

D

3 Bất phương trình : f(x)  m có nghiệm đúng x+D

<=> m min f(x)

D

Trang 2

<=> m max f(x)

D

5 Bất phương trình m > f(x) có nghiệm x+ D

<=> m min f(x)

D

6 Bất phương trình : f(x) > m có nghiệm đúng x+D

<=> m max f(x)

D

7 Bất phương trình : m > f(x) vô nghiệm trên D

<=> m min f(x) (Với giả thiết hàm số f(x) liên tục trên D)

B Bài toán

Bài toán 1: Tìm m để phương trình x2 – 2x = m có nghiệm x  [ 0; 1]

Giải: Xét hàm số f(x) = x2 – 2x

Là hàm số liên tục trên [0;1] từ bảng biến thiên của hàm số f(x) trên [0;1]

Ta có : maxf(x) = 0 ; min f(x) = - 1

[0 ; 1] [0; 1]

Vậy điều cận cần và đủ để phương trình có nghiệm trên [0; 1] là 1 m0

Bài toán 2: Tìm m để bất phương trình 4x – x2  m nghiệm đúng x  [0; 5] Giải: Xét hàm số f(x) = 4x – x2 là hàm số bậc hai, biến x:

Trang 3

Có 4

2 

a

b

Ta có f(0) = 0; f(4) = 0; f(5) = -5

Bất phương trình nghiệm đúng x  [0; 5]

Đáp số : m  - 5

Bài toán 3: Tìm điều kiện cho m để bất phương trình mx4 – 4x + m  0 nghiệm đúng xR

Giải vắn tắt :

1

4

x

x

Bằng phương pháp đạo hàm xét hàm

1

4 4

x

x

Ta có : maxg(x)  4 27

R

Do đó bất phương trình nghiệm đúng xR điều kiện cần và đủ là :

m  maxg(x)  4 27

R

Đáp số : m 4 27

Bài toán 4: Tìm tất cả các giá trị của m để x [0; 2] đều là nghiệm của bất

phương trình

5 ) 2 ( log 4 2

log2 x2 xm 4 x2  xm

Trang 4

Bất phương trình  log2 x  2xm 4 log4(x  2xm)  5

Đặt t = log4(x2 2xm)  5 ;t 0

Bất phương trình trở thành : t2 + 4t – 5  0  - 5  t  t

Kết hợp với t  0 Ta có : 0  t  1

Suy ra : 0  log4(x2 2xm)  1

4 2

1 2

2 2

m x x

m x x

m x

x

m x x

4 2

1 2

2 2

Bất phương trình nghiệm đúng x  [0; 2] khi và chỉ khi

m x

x

m x

x

4 ) 2 ( max

1 ) 2 ( min

2 ] 2

; 0 [

2 ] 2

; 0 [

y

m

m

4 0

1 1

(Xem hình bên)

 2  m  4 0 2 x

-1

Bài toán 5: Tìm a để bất phương trình sau có nghiệm

X3 + 3x2 – 1  a ( x  x 1 )3 (1)

Trang 5

Giải vắn tắt:

+ Do x  x 1  0 nên (5)  (x3 + 3x2 – 1) ( x  x 1 )3 a (2)

TXĐ của (2) là : x  1 + Hai hàm số : f(x) = x3 + 3x2 –1 và g(x) = xx 1 đều dương và đống biến khi : x  1 => Hàm số h(x) = x3 + 3x2 –1 ( 3

) 1

 x

Đồng biến khi x  1 => min ( ) ( 1 ) 3

h x h

x

Vậy (2) có nghiệm khi và chỉ khi : a  min ( 2 ) 3

h

x

Đáp số : a  3

Bài toán 6: Cho hàm số f(x) = (m – 1) 6x - 2 1

6

2

 m

x tìm m để bất phương trình (x – 61-x) f(x)  0 x  [0; 1]

Giải vắn tắt :

+ Với x = 1 thì bất phương trình thoả mãn không phụ thuộc vào m, nên chỉ cần tìm m để bất phương trình thoả mãn x  [0; 1]

Lưu ý : h(x) = x – 61-x =x – 6 ( x

) 6

1 (

là hàm đồng biến trên [0; 1] và h(1) = 0

=> h(x) < 0 x  [0; 1]

Do đó chỉ cần tìm ra m để g(x)  0 x  [0; 1]

Trang 6

Đặt t = 6  [0; 6] Ta có : m  ( )

2

2

t t

t t

Với t  [0; 6]

Lập bảng biến thiên g(t) trên [1 ; 6] ta có kết quả

2

1 ) ( min ] 6

; 1 [

t g

Đáp số : m 

2 1

Bài toán 7: Tìm m để phương trình sau có nghiệm

( x 1  3 x (x 1 )( 3 x) m

Giải :

Đặt t = x 1  3 x thì 2  t  2 2

+ Khi đó phương trình trở thành

f(x) = tt 2 m

2 2

Lập bảng biến thiên của f(t) với 2  t  2 2

Ta có : min ( ) 2 2 2

] 2 2

; 2 [

t f

2 ) ' ( max ] 2 2

; 2 [

t f

Vậy phương trình có nghiệm  2 2  2 m 2

Bài toán 8: Tìm m để phương trình sau có nghiệm

Trang 7

Giải :

3 2

2 3 '

; 3

3

2 3

x x

x t x x

t(-1) = 2 ;t( 0 )  0 => 0  t  2

(1) => t2 + m – 2 – t = 0 <=> m = -t2 + t + 2 = f(t)

=> f’(t) = -2t + 1 ; f’(t) = 0  t = 1/2

Bảng biến thiên:

T 0 1/2 2

f’ + 0 -

f 9/4

2 2

4

9 ) ( max

] 2

; 0 [ ]

2

;

0

[ f tf t

Đáp số : m  [ ]

4

9

; 2

Bài toán 9: Tìm m để phương trình

0 2 1

2 1

1     2   

Giải:

Đặt t = x 1  1 x với x  [-1;1]

Trang 8

t’ = 0

1 2

1 1 2

1

x

 x + 1 = 1 – x  x = 0

=> t  [ 2 ; 2 ] Với t2 = 2 + 2

1

2 x

(1) trở thành : t + t2 – 2 – m + 2 = 0

 m = t2 + t = f(t) => f’(t) = 2t + 1> 0

 t  [ 2 ; 2 ] ; f( 2) = 2 + 2 ; f(2) = 6

=> min ( ) 2 2 ; max ( ) 6

] 2

; 2 [ ]

2

; 2 [

t f

Vậy phương trình có nghiệm  m  [ 2 + 2 ; 6]

Phương trình vô nghiệm  m  (-  ; 2  2 )  ( 6 ;  )

Đáp số : m  (-  ; 2  2 )  ( 6 ;  )

Bài toán 10: Tìm m để phương trình sau có nghiệm

Sin4x + cos4x + sin2x + m = 0 Giải vắn tắt :

Phương trình  Sin22x – 2sin2x – 2(m+1) = 0 Đặt t = sin 2x ; [t]  1

=> t2 – 2t – 2 (m + 1) = 0

Trang 9

 m = 1 ( )

2

1 2

t g t

t   

Ta có : g(-1) = 1/2 ; g(1) = -3/2 ; g(1/4) = -39/32

=>

2

3 ) ( min

; 2

1 ) ( max

] 1

; 1 [ ]

1

; 1 [

t g t

g

Đáp số :

2

1 2

3

CÁC BÀI TOÁN TỰ GIẢI

Bài 1: Tìm m để phương trình: x2 – mx + 2m – 1 = 0

Có nghiệm x  (0; 1)

Bài 2: Tìm a để bất phương trình sau nghiệm đúng x R

(x2 + 4x + 3) (x2 + 4x + 6)  a

Bài 3: Tìm m để phương trình sau có 4 nghiệm

Phân biệt [0; 2]

0 2

4x22xx22x1 m

Bài 4: Tìm m để phương trình

x4 - 2x3 + mx2 – 2x + 1 = 0 có nghiệm x(0; 1)

Bài 5: Tìm m để bất phương trình sau vô nghiệm

Trang 10

III KẾT LUẬN

Trên đây là một sáng kiến nhỏ của chúng tôi mong các bạn đồng nghiệp góp ý, bổ sung cho đề tài hoàn thiện hơn

Nghi Lộc, ngày 20 tháng 5 năm 2009

Người thực hiện

Nguyễn Văn Nho

Ngày đăng: 30/07/2014, 05:21

HÌNH ẢNH LIÊN QUAN

Bảng biến thiên: - SÁNG KIẾN KINH NGHIỆM DẠY HỌC MÔN TOÁN CẤP 3 potx
Bảng bi ến thiên: (Trang 7)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w