1. Trang chủ
  2. » Giáo án - Bài giảng

Tiết 58- HÀM SỐ LIÊN TỤC T1

27 689 6

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 1,64 MB

Nội dung

Tiết: 58 i vi cỏc hm s trờn cỏc em hóy )(xf 1x limvaứ f(1) Tớnh coự) neỏulimvaứ f(1) saựnh So 1x ( )(xf BI TON 2 )( xxf = (I) , ( ) 2 x f x = < neỏu x 1 , neỏu x 1 (III) 2 , ( ) 3 , x f x = = neỏu x 1 neỏu x 1 (II) V phỏc ho th ca hm s. th cú l ng lin nột khụng? ( ) 2 ( )I f x x= 1)1( =f 1lim)(lim 2 11 == →→ xxf xx )1()(lim 1 fxf x = → Đồ thị là một đường liền nét (P) BÀI TOÁN O y x 1 1 -1 ( ) 2 , ( ) x II f x ≠  =  =  neáu x 1 3 ,neáu x 1 3)1( =f 2)2(lim)(lim 11 == →→ xxf xx )1()(lim 1 fxf x ≠ → Đồ thị không là một đường liền nét • y x O 1 2 3 BÀI TOÁN ( ) , ( ) x III f x = < neỏu x 1 2 ,neỏu x 1 1)1( =f 1lim)(lim 22lim)(lim 11 11 == == ++ xxf xf xx xx 1 lim ( ) x f x Khoõng ton taùi th khụng l mt ng lin nột y x O 1 1 2 y = x y = 2 BI TON x y O 1 2 3 • y x O 1 1 2 y x O 1 1 Đồ thị không là một đường liền nét Đồ thị không là một đường liền nét Đồ thị là một đường liền nét )1()(lim 1 fxf x ≠ → )1()(lim 1 fxf x = → )(lim 1 xf x→ taïi toàn khoâng Hàm số liên tục tại x=1 Hàm số không liên tục tại x=1 Theo các em thì hàm số phải thỏa mãn điều kiện gì thì liên tục tại x=1? BÀI TOÁN Hàm số không liên tục tại x=1 = ( ) 1 lim x f x → ( ) 1f HÀM SỐ LIÊN TỤC HÀM SỐ LIÊN TỤC I. Hàm số liên tục tại một điểm: II. Hàm số liên tục trên một khoảng, trên một đọan: III. Một số định lý cơ bản: I.Hàm số liên tục tại một điểm: Cho hàm số y = f(x) xác định trên khoảng K và x 0 ∈K. )()(lim 0 0 xfxf xx = → Hàm số y=f(x) được gọi là liên tục tại điểm x 0 nếu 1) Định nghĩa: HÀM SỐ LIÊN TỤC HÀM SỐ LIÊN TỤC Hàm số y=f(x) không liên tục tại x 0 được gọi là gián đoạn tại điểm đó. I.Hàm số liên tục tại một điểm: II. Hàm số liên tục trên một khoảng, trên một đọan: 1) Định nghĩa: 2) Các bước : VD1 Định nghĩa: Bài toán VD2 BT CC TK Dựa vào ví dụ vừa nêu các em hãy thử định nghĩa hàm số f(x) liên tục tại điểm x 0 VD3 I.Hàm số liên tục tại một điểm: Cho hàm số y = f(x) xác định trên khoảng K và x 0 ∈K. )()(lim 0 0 xfxf xx = → Hàm số y = f(x) được gọi là liên tục tại điểm x 0 nếu 1) Định nghĩa: HÀM SỐ LIÊN TỤC HÀM SỐ LIÊN TỤC f(x) liên tục tại x 0   ⇔    Tồn tại ( ) 0 x x lim f x → ( ) ( ) 0 0 x x lim f x f x → = f(x) xác định trên khoảng K và 0 x K∈ I.Hàm số liên tục tại một điểm: II. Hàm số liên tục trên một khoảng, trên một đọan: 1) Định nghĩa: 2) Các bước : VD1 Định nghĩa: Bài toán VD2 BT CC TK VD3 HÀM SỐ LIÊN TỤC HÀM SỐ LIÊN TỤC I. Hàm số liên tục tại một điểm: Ví dụ 1: (VD1/136/SGK) Xét tính liên tục của hàm số sau tại x 0 = 3. ( ) x f x x 2 = − Giải ( ) 3 3 *lim lim 3 2 → → = = − x x x f x x TXĐ: và ( ) 0 x 3 2; D= ∈ +∞ ⊂ { } * R \ 2 Vậy hàm số liên tục tại x 0 = 3 ( ) * 3 3=f ( ) ( ) x 3 *Suy ra : f 3 limf x 3 → = = )()(lim 0 0 xfxf xx = → Hàm số có liên tục tại x 0 = 2 không? I.Hàm số liên tục tại một điểm: II. Hàm số liên tục trên một khoảng, trên một đọan: 1) Định nghĩa: 2) Các bước : VD1 Định nghĩa: Bài toán VD2 BT CC TK VD3 [...]... ra hàm số f(x) khơng liên tục tại x0 = 0 CC MH Bài tốn TK I .Hàm số liên tục tại một điểm: HÀM SỐ LIÊN TỤC I Hàm số liên tục tại một điểm:  x 2 + 1 ,nếu x > 0 Ví dụ 2b: f ( x) =  x 1) Định nghĩa: VD1 ,nếu x ≤ 0 2) Các bước…: VD2 y BT y = x2+1 II Hàm số liên tục trên một khoảng, trên một đọan: 1 O Định nghĩa: VD3 CC y=x x Bài tốn TK I .Hàm số liên tục tại một điểm: 1) Định nghĩa: HÀM SỐ LIÊN TỤC II Hàm. ..Bài tốn TK I .Hàm số liên tục tại một điểm: HÀM SỐ LIÊN TỤC 2) Các bước xét tính liên tục của hàm số y = f(x) tại x0 THẢO LUẬN NHĨM 1) Định nghĩa: VD1 2) Các bước : VD2 BT II Hàm số liên tục trên một khoảng, trên một đọan: Định nghĩa: VD3 CC lim f ( x) = f ( x0 ) x → x0 Để xét tính liên tục của hàm số tại một điểm ta cần thực hiện những bước nào? Bài tốn HÀM SỐ LIÊN TỤC TK I .Hàm số liên tục tại một điểm:... I .Hàm số liên tục tại một điểm: 1) Định nghĩa: VD1 2) Các bước : VD2 BT II Hàm số liên tục trên một khoảng, trên một đọan: Định nghĩa: VD3 CC HÀM SỐ LIÊN TỤC II Hàm số liên tục trên một khoảng, trên một đoạn: Định nghĩa 1: Hàm số f(x) được gọi là liên tục trên một khoảng nếu nó liên tục tại mọi điểm của khoảng đó a x0 b ( ) Định nghĩa 2: Hàm số y = f(x) được gọi là liên tục trên đoạn [a;b] nếu nó liên. .. thay số 5 bởi số nào để hàm số liên tục ( x − 2)( x 2 + 2 x + tại x0 =2? 4) x−2 = lim( x 2 + 2 x + 4) = 12 x→2 x→2 * Suy ra : lim f (x) ≠ f (2) x →2 Vậy hàm số f(x) khơng liên tục tại x = 2 MH Bài tốn TK I .Hàm số liên tục tại một điểm: 1) Định nghĩa: VD1 HÀM SỐ LIÊN TỤC I Hàm số liên tục tại một điểm: Ví dụ 2a:  x3 − 8 , nếu x ≠ 2  y f (x) =  x − 2 12 5 ,nếu x = 2  2) Các bước…: VD2 BT II Hàm số liên. .. liên tục trên khoảng (a;b) và: lim f ( x) = f (a) và lim f ( x) = f (b) x→a + x →b − * Khái niệm hàm số liên tục trên nửa a b x khoảng được định nghĩa0 một cách tương tự [ ] Bài tốn TK I .Hàm số liên tục tại một điểm: 1) Định nghĩa: lim f ( x) = f ( x0 ) HÀM SỐ LIÊN TỤC x→ x II Hàm số liên tục trên một khoảng, trên một đoạn: Ví dụ 3: Xét tính liên tục của hàm số 0 VD1 2) Các bước : VD2 BT II Hàm số liên. .. 5x  Cho hàm số f ( x ) =    3x a x → x0 , nếu x ≠ 0 , nếu x = 0 Hàm số liên tục tại x0 = 0 thì giá trị của a là: 5 3 1 C/ 3 A/ − B/ 0 5 D/ 3 Định nghĩa: VD3 CC BT KẾT THÚC BÀI HỌC Bài tốn TK I .Hàm số liên tục tại một điểm: 1) Định nghĩa: VD1 2) Các bước…: VD2 BT II Hàm số liên tục trên một khoảng, trên một đọan: Định nghĩa: VD3 CC lim f ( x) = f ( x0 ) HÀM SỐ LIÊN TỤC x → x0 I Hàm số liên tục tại... Các bước : VD2 BT II Hàm số liên tục trên một khoảng, trên một đọan: Định nghĩa: VD3 CC HÀM SỐ LIÊN TỤC lim f ( x) = f ( x0 ) x → x0 I .Hàm số liên tục tại một điểm: Ví dụ 2: Xét tính liên tục của hàm số sau tại x0:  x3 − 8 , nếu x ≠ 2  a/ f (x) =  x − 2 với x0=2 5 ,nếu x = 2   x 2 + 1 , nếu x > 0 b/ f (x) =  với x0=0 ,nếu x ≤ 0 x THẢO LUẬN NHĨM Bài tốn TK I .Hàm số liên tục tại một điểm: 1)... TỤC II Hàm số liên tục trên một khoảng, trên một đọan: Đồ thị của hàm số y = f(x) = x2 trên đoạn [-2;2] VD1 y 2) Các bước…: VD2 4 BT II Hàm số liên tục trên một khoảng, trên một đọan: Định nghĩa: VD3 CC x -2 O 2 Đồ thị của hàm số liên tục trên khoảng là một “đường liền” trên khoảng đó Bài tốn BÀI TẬP THÊM TK I .Hàm số liên tục tại một điểm: 1) Định nghĩa: VD1 2) Các bước : VD2 BÀI 1: Cho hàm số:  x 2... BT II Hàm số liên tục trên một khoảng, trên một đọan: Định nghĩa: VD3 CC lim f ( x) = f ( x0 ) HÀM SỐ LIÊN TỤC x→ x BÀI TỐN Xét tính liên tục của hàm số f(x) = x2 tại điểm x0 bất kỳ thuộc (-2;2) 0 Giải ∀x0 ∈ (−2;2) Ta có: • f(x0)= x02 2 lim x 2 = x 0 lim •x → x f (x) =x → x 0 0 lim •Suy ra x → x f ( x) = f ( x0 ) 0 Vậy f(x) liên tục tại điểm x0 bất kỳ thuộc khoảng (-2;2) Ta nói hàm số trên liên tục trên...  x − 2 12 5 ,nếu x = 2  2) Các bước…: VD2 BT II Hàm số liên tục trên một khoảng, trên một đọan: 5 3 Định nghĩa: VD3 CC x -1 O 2 Bài tốn TK I .Hàm số liên tục tại một điểm: 1) Định nghĩa: VD1 2) Các bước…: VD2 BT II Hàm số liên tục trên một khoảng, trên một đọan: Định nghĩa: VD3 lim f ( x) = f ( x0 ) HÀM SỐ LIÊN TỤC x → x0 I Hàm số liên tục tại một điểm:  x 2 + 1 ,nếu x > 0 Ví dụ 2b: f ( x) =  , . HÀM SỐ LIÊN TỤC HÀM SỐ LIÊN TỤC I. Hàm số liên tục tại một điểm: II. Hàm số liên tục trên một khoảng, trên một đọan: III. Một số định lý cơ bản: I .Hàm số liên tục tại một điểm: Cho hàm số. )()(lim 0 0 xfxf xx = → Hàm số y=f(x) được gọi là liên tục tại điểm x 0 nếu 1) Định nghĩa: HÀM SỐ LIÊN TỤC HÀM SỐ LIÊN TỤC Hàm số y=f(x) không liên tục tại x 0 được gọi là gián đoạn tại điểm đó. I .Hàm số liên tục. Các bước xét tính liên tục của hàm số y = f(x) tại x 2) Các bước xét tính liên tục của hàm số y = f(x) tại x 0 0 HÀM SỐ LIÊN TỤC HÀM SỐ LIÊN TỤC Để xét tính liên tục của hàm số tại một điểm ta

Ngày đăng: 19/07/2014, 20:00

TỪ KHÓA LIÊN QUAN

w