1. Trang chủ
  2. » Giáo án - Bài giảng

Ôn tập chương III hình học lớp 9

11 5,1K 32

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 1,8 MB

Nội dung

-Trong một đường tròn , đường kính đi qua điểm chính giữa cung thì vuông góc với dây căng cung và đi qua trung điểm của dây ấy.. - Trong một đường tròn , đường kính đi qua trung điểm củ

Trang 1

Giáo viên : CHÂU ĐÌNH VIỆT

Trang 2

I Ôn tập về cung – liên hệ giữa cung , dây và đường kính

Bài tập 1: Cho đường tròn (O) , có AOB = a 0 , COD = b 0 Vẽ dây AB , CD a) Tính số đo cung nhỏ , cung lớn AB và CD.

b) Cung nhỏ AB = Cung nhỏ CD khi nào?

c) Cung nhỏ AB > Cung nhỏ CD khi nào?

d) Cho E là điểm nằm trên cung AB , hãy điền vào ô trống để được

khẳng định đúng:SdAB = SdAE +…

C

D

A

B

0

a

0

b

Giải:

O

E

b) AB nhỏ = CD nhỏ <=> a 0 = b 0 hoặc dây AB = dâyCD c) AB nhỏ > CD nhỏ <=> a 0 > b 0 hoặc dâyAB > dây CD) d) SdAB = SdAE + … SdEB

a)SdAB nhỏ = AOB = a 0 => SdAB lớn = 360 0 – a 0 SdCD nhỏ = COD = b 0 => SdCD lớn = 360 0 – b 0

Trang 3

Bài tập 2 : Cho đường tròn (O) đường kính AB = 2R , dây CD không đi qua tâm và cắt đường kính AB tại H Hãy điền mũi tên (=> ; )vào sơ đồ dưới đây để được suy luận đúng:

A

B

O H

AB CD

CH = HD

EF // CD => CE = DF

AC = AD

- Trong một đường tròn , đường kính vuông góc với một dây thì đi qua

trung điểm của dây và chia cung căng dây ấy làm hai phần bằng nhau.

-Trong một đường tròn , đường kính đi qua điểm chính giữa cung

thì vuông góc với dây căng cung và đi qua trung điểm của dây ấy.

- Trong một đường tròn , đường kính đi qua trung điểm của một dây

(không phải là đường kính) thì vuông góc với dây và đi qua chính giữa

cung.

Trang 4

II Ôn tập về góc với đường tròn:

Bài tập 3 (89/104 SGK) : Trong hình 67, cung AmB có số đo là 60 0 Hãy: a) Vẽ góc ở tâm chắn cung AmB Tính góc AOB.

b) Vẽ góc nội tiếp đỉnh C chắn cung AmB Tính góc ACB

c) Vẽ góc tạo bỡi tia tiếp tuyến Bt và dây cung BA Tính góc ABt.

d) Vẽ góc ADB có đỉnh D ở bên trong đường tròn So sánh góc ADB với góc ACB e) Vẽ góc AEB có đỉnh E ở bên ngoài đường tròn (E và C cùng phía đối với AB).

So sánh góc AEB với góc ACB.

E

G

C F

O D

t

m

H

a) AOB = SdAmB = 60 0 (góc ở tâm ) b) ACB = ½ SdAmB = ½ 60 0 = 30 0 (góc nội tiếp) c) ABt = ½ SdAmB = ½ 60 0 = 30 0 (góc tạo

bỡi tia tiếp tuyến và dây cung) d) ADB = ½ (SdAmB + SdFC) => ADB > ACB e) AEB = ½ (SdAmB - SdGH) => AEB < ACB.

Trang 5

1) Góc ở tâm.

2) Góc nội tiếp.

3) Góc tạo bỡi tia tiếp…

4) Góc có đỉnh ở bên trong…

5) Góc có đỉnh ở bên ngoài…

Số đo

= số đ o

Số đo = ½ số đo

Số đo

= ½ hiệ

u s ố đ

o 2

Số đ o = ½

tổng số đ

o 2

Số đo = ½

BỊ CHẮN

Trang 6

a) Phần thuận : Mọi điểm có tính chất T đều thuộc hình H.

b) Phần đảo : Mọi điểm thuộc hình H đều có tính chất T.

c) Kết luận :Quĩ tích (hay tập hợp ) các điểm M có tính chất T

là hình H.

A

α°

α°

B O

O' M

M'

0

 0

0

*) Nếu = 90 0 Quĩ tích (Tập hợp) các điểm M nhìn đoạn thẳng AB cố định dưới một góc vuông là đường tròn đường kính AB.

M

M'

O

Quĩ tích cung chứa góc: Quĩ tích (tập hợp) các điểm M thoả mãn AMB = (0 0 < <180 0 ) , là hai cung chứa góc dựng trên đoạn AB.

0

Cách giải một bài toán quĩ tích:

Trang 7

III Ôn tập về tứ giác nội tiếp.(Hoạt động nhóm)

Bài tập 4 : Tứ giác ABCD nội tiếp được đường tròn tâm

O khi có một trong các điều kiện sau:( Đúng – Sai )

1) DAB + BCD = 180 0

2) Bốn đỉnh A,B,C,D cách đều điểm O.

3) DAB = BCD

4) ABD = ACD

5) Góc ngoài tại đỉnh B bằng góc A.

6) Góc ngoài tại đỉnh B bằng góc D.

7) ABCD là hình thang cân.

8) ABCD là hình thang vuông.

9) ABCD là hình chữ nhật.

10) ABCD là hình thoi.

A

B

C

D

O

Đ Đ S Đ S Đ Đ S Đ S

Trang 8

IV.Ôn tập về đường tròn nội tiếp ,đường tròn ngoại tiếp đa giác đều.

a) Câu hỏi:

-Thế nào là đa giác đều?

-Thế nào là đường tròn ngoại tiếp đa giác?

-Thế nào là đường tròn nội tiếp đa giác?

-Phát biểu định lí về đường tròn ngoại tiếp và

đường tròn nội tiếp đa giác đều?

b) Bài tập 4:Cho đường tròn (0;R)

Vẽ hình lục giác đều, hình vuông, tam

giác đều nội tiếp đường tròn Nêu

cách tính độ dài cạnh các đa giác đó

theo R.

2

3

*/ Cạnh lục giác đều : a 6 = R

*/ Cạnh hình vuông : a 4 = R

*/ Cạnh tam giác đều : a 3 = R

R

6

a 4

a 3

Trang 9

V Ôn tập về độ dài đường tròn , diện tích hình tròn.

1) Câu hỏi

- Viết công thức tính độ dài (O;R) , và độ dài cung tròn n 0 ?

- Viết công thức tính diện tích hình tròn và diện tích hình quạt tròn cung n 0 ?

0

0 0 ( )

2

180

n

Rn

C   Rl  

2 0 2

0

q

2) Bài tập 5: (91tr104 SGK) Trong hình

68 , đường tròn tâm O có bán kính R = 2 cm

và góc AOB = 75 0

a) Tính số đo cung ApB

b) Tính độ dài hai cung AqB và ApB.

c) Tính diện tích hình quạt tròn OAqB.

B

A O

p

q

2cm

75 0

a) SđApB = 360 0 – sđAqB = 360 0 – 75 0 = 285 0

AqB

b l     cm

.2.285 19

( )

ApB

l    cm

2

2

.2 75 5

360 6

qOAqB

H.68

Trang 10

Hướng dẫn về nhà :

1) Tiếp tục ôn tập các định nghĩa , định lí , dấu

hiệu nhận biết , công thức của chương III.

2) Bài tập về nhà : Bài 92 – 98 / 104 SGK; Bài 78,79/85 SBT 3) Tiết sau kiểm tra một tiết.

Hướng dẫn : Trên hình có những điểm nào cố định , điểm nào di

động , điểm M có tính chất gì không đổi ?.

A

O

B M

Bài tập 98/105SGK: Cho đường tròn (o) và một điểm A cố định trên đường tròn.Tìm quĩ tích các trung điểm M của dây AB khi điểm B di động trên đường tròn đó.

Điểm M có liên hệ gì với đoạn thẳng cố định OA? Vậy điểm M di chuyển trên đường nào?

Trang 11

CẢM ƠN QUÍ THẦY , CÔ GIÁO CÙNG TẤT CẢ CÁC

EM THAM DỰ TIẾT HỌC HÔM NAY!

Ngày đăng: 16/07/2014, 17:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w