Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 23 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
23
Dung lượng
667,5 KB
Nội dung
TOÁN LỚP 10 A. KHỞI ĐỘNG • Cho một sợi dây không co dãn có độ dài là 2a, (a > 0) có hai đầu được cột chặt vào hai cây đinh nhỏ. • Trên bảng con của mỗi nhóm đều có 2 lỗ tròn nhỏ F 1 và F 2 . Khoảng cách F 1 F 2 = 2c, (c > 0). • Đặt hai cây đinh vào hai lỗ tròn F 1 và F 2 , giữ chặt. Dùng viết lông kéo căng sợi dây để vạch lên đường cong (E) trên bảng con. • Hãy cho biết tính chất của điểm M bất kỳ trên đường cong (E) đối với hai điểm F 1 và F 2 ? • Hãy nhận xét về độ lớn giữa c và a ? Tính tỉ số • Hãy so sánh độ “gầy”, “mập” của đường cong của nhóm mình với các nhóm khác . Tìm cho nhóm mình một cách giải thích về độ “gầy”, “mập” trên. • Hãy nhận xét về tính đối xứng của đường cong (E). c e a = B. Nhận xét về đường cong (E) • Tổng khoảng cách từ điểm M bất kỳ trên (E) đến F 1 và F 2 luôn bằng chiều dài sợi dây là 2a (không đổi). F 1 M + F 2 M = 2a • Độ lớn c luôn nhỏ hơn a. • Nếu c ≥ a thì không vẽ được (E). • Nếu c càng nhỏ so với a thì (E) càng “mập” • Nếu c càng lớn so với a thì (E) càng “gầy” • Như vậy, độ “mập”, “gầy” của (E) phụ thuộc vào độ lớn của tỉ số e = c / a 0 < e < 1 • e càng nhỏ thì (E) càng “mập” . • e càng lớn thì (E) càng “ gầy” . • (E) nhận đường thẳng chứa F 1 F 2 và đường trung trực của F 1 F 2 làm trục đối xứng • (E) nhận trung điểm của F 1 F 2 làm tâm đối xứng. (E) F 1 F 2 O M Ta gọi các đường cong (E) nói trên là các đường elip. Vậy đường elip là gì ? Những hình ảnh về đường Elip trong khoa học và đời sống (E) I . CÁC ĐỊNH NGHĨA Cho hai điểm cố định F 1 , F 2 với F 1 F 2 = 2c (c > 0) • Đường Elip là tập hợp các điểm M sao cho F 1 M + F 2 M = 2a Trong đó a là hằng số cho trước lớn hơn c • Hai điểm F 1 và F 2 gọi là các tiêu điểm của elip. • Khoảng cách F 1 F 2 = 2c gọi là tiêu cự của elip. • Tỉ số gọi là tâm sai của elip. c e a = M ∈ (E ) ⇔ F 1 M + F 2 M = 2a , (a > c > 0 ) ° ° F 1 F 2 2c M II . Phương trình chính tắc của elip y x O ° (- c ; 0 ) ( c ; 0 ) ( x ; y ) Chọn hệ trục tọa độ Oxy có gốc O là trung điểm của F 1 F 2 , trục Oy là trung trực của F 1 F 2 như hình vẽ. Khi đó ta có tọa độ F 1 , F 2 là Cho elip (E) có các tiêu điểm F 1 , F 2 . Tiêu cự F 1 F 2 = 2c như hình vẽ. M ∈ (E) ⇔ F 1 M + F 2 M = 2a với a > c > 0 F 1 ( - c ; 0) F 2 ( c ; 0)và M • ° ° F 1 F 2 ° (E) 2c x y F 1 F 2 O -c c M ( x ; y ) (E) ° Ta có ° M(x ; y) ∈ (E) ⇔ F 1 M + F 2 M = 2a (1) F 1 ( - c ; 0) F 2 ( c ; 0) F 1 M 2 = ( x + c ) 2 + y 2 F 2 M 2 = ( x - c ) 2 + y 2 ⇒ F 1 M 2 - F 2 M 2 = và F 1 M 2 + F 2 M 2 = 4cx (*) 2x 2 + 2y 2 + 2c 2 (**) (*) ⇒ F 1 M - F 2 M = 1 2 (2) 4 4 2 2 cx cx cx F M F M a a = = + (1) và (2) ⇒ F 1 M = và F 2 M = c a x a + c a x a − (3) Các đoạn thẳng F 1 M và F 2 M được gọi là các bán kính qua tiêu của điểm M Độ lớn các bán kính qua tiêu của điểm M được tính theo công thức (3) Thay (3) vào (**) và rút gọn ta thu được phương trình : (a 2 - c 2 )x 2 + a 2 y 2 = a 2 (a 2 - c 2 ) (4) Vì a > c > 0 nên a 2 > c 2 . Đặt b 2 = a 2 - c 2 (b > 0), ta có ( ) 2 2 2 2 1 0b x y a b a+ > >= (5) là phương trình chính tắc của elip đã cho. ( ) 2 2 2 2 2 2 2 2 2 2 1 4 b x a y a b x y a b ⇔ + = ⇔ + = Ta gọi phương trình : GHI NHỚ Định nghĩa : M ∈ (E ) ⇔ F 1 M + F 2 M = 2a , (a > c > 0 ) Trong đó F 1 , F 2 là hai tiêu điểm cố định, F 1 F 2 = 2c là tiêu cự y Phương trình chính tắc của elip : 2 2 2 2 1 x y a b + = Trong đó a > b > 0, c 2 = a 2 – b 2 x F 1 F 2 O -c c M (E) ° ° Tiêu điểm F 1 ( - c ; 0) F 2 ( c ; 0) tâm sai Bán kính qua tiêu F 1 M = a + ex , F 2 M = a - ex c e a = [...]... B1 , B2 là 4 đỉnh của elip (E) Trục Ox gọi là trục lớn của (E), ta cũng gọi đoạn A1A2 là trục lớn của (E ) Trục Oy gọi là trục nhỏ của (E), ta cũng gọi đoạn B1B2 là trục nhỏ của (E ) Hình chữ nhật PQRS có các cạnh tiếp xúc với (E) tại 4 đỉnh của (E) như hình vẽ gọi là hình chữ nhật cơ sở của (E) 2 Tâm sai của elip c Ta đã định nghĩa tâm sai của elip là : e = a Tâm sai của elip là tỉ số giữa tiêu... và – b ≤ y0 ≤ b D Tất cả đều đúng y III.Nhận xét về hình dạng ( ) của elip P° (x0 ; – y0 ) –a;b Xét elip (E) có pt chính tắc: 2 2 x y + 2 = 1 (a > b > 0) 2 a b 1.Tính đối xứng –a ° A1 S° (– a ; – b ) M1 ° –c F1 ( x ; y0 ) 0 B2 M b ° ° ° O ° °Q c F2 ° (a;b) ° M3 – b B1 ( x M2– y ) (– x0 ; – y0 ) 0 ; 0 a ° A2 x °R (a;–b) Đường elip (E) nhận các trục tọa độ làm các trục đối xứng và gốc tọa độ làm... chính tắc của elip của mình ? NHÓM I: Có a = 6, c = 2 ⇒ b2 = a2 – c2 = 36 – 4 = 32 Do đó pt (E1) là: NHÓM II: Có a = 7, c = 4 ⇒ b2 = a2 – c2 = 49 – 16 = 33 Do đó pt (E2) là: NHÓM III: Có a = 7, c = 6 ⇒ b2 = a2 – c2 = 49 – 36 = 13 Do đó pt (E3) là: NHÓM IV: Có a = 7, c = 13/5 ⇒ b2 = a2 – c2 = 105 6/25 Do đó pt (E4 ) là: x2 y 2 + =1 36 32 2 2 x y + =1 49 33 x2 y 2 + =1 49 13 x2 y2 + 49 105 6 =1 25 2 2... số giữa tiêu cự và trục lớn của elip Ta có 0 < c < a nên tâm sai của elip luôn nhỏ hơn 1 : 0 < e < 1 c e= = a Do đó : a −b a 2 b 2 = 1− e a 2 2 2 b b 2 = 1 − ÷ ⇒e =1 − ÷ a a hay b = a 1 − e 2 Từ đó suy ra Nếu e càng nhỏ thì b càng gần bằng a ⇒ (E) càng “mập” Nếu e càng lớn thì b càng nhỏ so với a ⇒ (E) càng “gầy” Ví dụ 3: Hãy vẽ hình chữ nhật cơ sở của elip của nhóm Tính độ dài trục lớn... B1(-1 ; 0), B2(1 ;0) , Ví dụ 5: Pt chính tắc của (E) có độ dài trục bé là 8, tiêu cự là 4 là: x2 y 2 A) + =1 80 64 x2 y2 C) + =1 64 16 2 2 x y B) + =1 16 20 x2 y2 D) 20 + 16 = 1 Trong mặt phẳng Oxy cho Elip (E) có tâm sai e = 1/2 và độ dài trục lớn là 12 Viết phương trình chính tắc của (E) Tìm điểm M ∈ (E) biết tung độ M nhỏ hơn 0 và F2M = 4 VÍ DỤ 6: Hướng dẫn giải Lại có e = c/a ⇒ c = ae = 3 Ta có... biết độ dài trục lớn bằng ba lần độ dài trục nhỏ Hướng dẫn giải Theo giả thiết suy ra : a = 3b Mà a2 = b2 + c2 ⇒ 9b2 = b2 + c2 ⇒ c = b 8 c b 8 8 = Ta có e = = a 3b 3 Tổng kết Phương trình chính tắc của elip : 2 (E) -c 2 x y + 2 =1 2 a b y F1 M ° ° O c F2 Trong đó a > b > 0, a > c> 0 , c2 = a2 – b2 Tiêu điểm F11 (( c ;; 0) ,, F22 ((c ;; 0) Tiêu điểm F c 0) F c 0) F1M = a + ex F2M = a – ex Tâm sai . (E) 2. Tâm sai của elip Ta đã định nghĩa tâm sai của elip là : c e a = Tâm sai của elip là tỉ số giữa tiêu cự và trục lớn của elip Ta có 0 < c < a nên tâm sai của elip luôn nhỏ hơn 1. làm tâm đối xứng. (E) F 1 F 2 O M Ta gọi các đường cong (E) nói trên là các đường elip. Vậy đường elip là gì ? Những hình ảnh về đường Elip trong khoa học và đời sống (E) I . CÁC ĐỊNH. đường cong của nhóm mình với các nhóm khác . Tìm cho nhóm mình một cách giải thích về độ “gầy”, “mập” trên. • Hãy nhận xét về tính đối xứng của đường cong (E). c e a = B. Nhận xét về đường cong