1. Trang chủ
  2. » Trung học cơ sở - phổ thông

hệ thống bài tập toán lớp 10 nâng cao

26 7,5K 8
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 338,23 KB

Nội dung

      !"#$%&'()* +!, %-'. ( /'!0 12(3-4&'* +!, !0 !5(64#$% !"!07$5(#84  !" # ° 1% !"9:; <!, (<-% !"9*. 4 A  °=9!0' > A 3-4 °=93-4' > A !0 $%&'()'*+(,-.,-. #%&'()'/01 °=9!07$?!0' >9@A?#$% !"!0 °=9!07$?3-4' >9@A?#$% !"3-4 2(,-.,-./01 ° !"9?!0=97$?!"!0 12(!=3-4  ° !"9?3-4=9!07$?3-4 12(93-47$?!0 3"4#256""%78 , : ∀ ∃ #"4#25/01 278∀*#9∃ °B. 4∀C!6(#$7D4%64 °B. 4∃C!6(#$'E'84 " !" #"" ° A " x X, = ∀ ∈ 7D4%64F(G'. ( /'H A " x X ⇒ = ∃ ∈ :'E'84F* (G'. ( /'H ° B " x X = ∃ ∈ :'E'84F(G'. ( /'H B " x X ⇒ = ∀ ∈ :754%64F* (G'. ( /'H :;<=>?0@AB@?:CD !EF8%"GH8%  -I, #JCKLBM  1!, #J9@A?-649#$!4"*4!<!N(G?:(O?#$!4"*4(P!N(G9 !EFI'8%"G*+  #!EFI' 4Q3R'-(G!, #J9@A?KM -FS'% !"?@A9KTM     !"KM#$!0K7>#$%&'!, #JM % !"!Q1KTM(G' N!0 12(3-4  =% !"!Q1KTM#$!0' >% !"!Q1KTM64#$!, #J!Q1(<-% !"KM 28%"G*+  =!E' 4(G(Q!, #J' UKM7$!, #J!Q1KTM' >'-(G% !"!09? V0(!G'-G4C9#$!4"*4(P7$!<!N(G?7$(WG4?#$!4"*4(P7$!<!N (G9 $&J"4.JI"4. 4Q3R'-(P( %4 !, #J9@A? °4Q3R B K'(#$4Q3R?3-4 12(* (G?M °XY; S;3Z4C 1 2 B B B A ⇒ ⇒ ⇒ ⇒ K'[44Q' 4='M °\!G3-(G?K'(#$?!0M °]U9@A?!5(( %4  K"L °=!, #J!^(_; ['`4NZD4Z89@A?' >!, #J; ['`4NZD4Z8 B A ⇒  !5(64#$!, #J!Q1(<-!, #J'a °-(G'. ( /' A B B A ⇒ ⇔ ⇒  °]U:' -7>( %4 9@A?'-!4( %4  B A ⇒  M> M+a% !"; <!, 7$FS''. !03-4(<-% !"; <!, !GC -I ^'4  Tb T =+− xx (G 4%`I T  − ( 4- ='( 1 (Icd( 4- ='( 1b M+a% !"; <!, (<-%e4% !"3-C -I : T =∈∃ xRx `I : T +∈∀ nNn * ( 4- ='( 1d (I MK: T −≠−∈∀ xxRx M+$ ['`4N%e4% !"3-!)ZD4Z8% !"*S1' f1g=h' >hH -I[((8 !i4`j -#$!4"*4!<!N%&''4[(#$ > `>  $  `I4"*4!<!N'k-l`AT#$(G.' /'%&'3i- -`#D ^ (I4"*4!<!N%&''4[(#$ > 7#$ -4!( S17G( - M+3[(% !"3-!)!0 -3-4:4Q4' .( C -I 2 x N, x ∀ ∈ ( 4- ='( 1b@AF( 4- ='( 1b ` 2 x N, x ∀ ∈ ( 4- ='( 1m@AF( 4- ='( 1m $D=>:N?:OPD (QJRJ U; 5;#$%&'* [44%(^`Q(<-'1[ 6( T   2S#""T"!(QJRJ [( CV4'*a([(; P'R'1'U; 5; ]XC9@n:b:o::pc:ppq [( TC r-'. ( /'!2('(<-'U; 5; ]XC9@nhhhhhhhhq Là tập hợp khôpng có phần tử nào,kí hiệu là ∅ VJC∅@ { } { } . ≠ ∅ QJ"' # A B (x A x B) ⊂ ⇔ ∈ ⇒ ∈  ° A A. ⊂ ° = A B, B C thì A C ⊂ ⊂ ⊂ ° ∅ ⊂ Α ; ∅ ⊂ Β ; . . . 2D QJRJ2U.#8 A B (A B vaø B A) = ⇔ ⊂ ⊂ "MV8W=)-`4NZ4%&''U;(1`j s!4N%j%`a'1%&'!'O * S;*.64#$`4N!E]f =;9@n-:`:(q 3"J&J('(XY(QJRJ #RJ" ##(QJRJ K x A B x A hay x B ∈ ∪ ⇔ ∈ ∈ K7"Z( ° A ∪ ∅ = Α . ° A A A. ∪ = ° 4-1 1[C A B B A. ∪ = ∪ ° B=' 5;C A (B C) (A B) C (A C) B A B C. ∪ ∪ = ∪ ∪ = ∪ ∪ = ∪ ∪ 2 #'" ##(U; 5;C K x A B (x A vaø x B) ∈ ∩ ⇔ ∈ ∈ K7"Z( ° A ∩ ∅ = ∅ . ° A A A. ∩ = ° 4-1 1[C A B B A. ∩ = ∩ °B=' 5;C A (B C) (A B) C (A C) B A B C. ∩ ∩ = ∩ ∩ = ∩ ∩ = ∩ ∩ "&JEZ[JG2\ K/0 B. 4#$C B A A C hoaëc C B. B A x C (x A vaø x B) ∈ ⇔ ∈ ∉ b - ( 9 9∪? 9 ?  ? 9 ? 9 B A B A A \ B C = K7"Z( B A x x C C A B. = = A B x x B A C C . ]8" ##(QJRJ KKLBM*. 4#$C9t? x A \ B (x A vaứ x B) K7"Z( A \ A = A\ A = A B = = M> M+^]4='([('U; 5;3-ZD4Z8#4'*a; P'RC - 2 A {x N |x 7 vaứ x 10}. = < ` B {x N |x 15 vaứ x laứ boọi cuỷa 2} = ( C {x N | x 4 vaứ x laứ boọi cuỷa 3} = M+_]4='([('U; 5;3-ZD4Z8!2('C - A {0, 1, 4, 9,16, 25, 36}. = ` B {3, 5} = ( 1 1 1 1 1 C 1, , , , , 4 9 16 25 36 = Z 1 1 1 1 1 D , , , , 2 4 6 8 10 = f { } E (0, 2); (1, 3) = u v@ { } 9, 36, 81,144 { } G 3, 9, 27, 81 = M+`wS'x- `-1 $%4Wy([('U; 5;3-C - 2 A {x | x 3x 2 0} = + = 7$ B {x | x 2 0}. = = ` 2 B {x | x 1 0} = + = 7$ 2 F {x | x 4 0}. = = ( G {2, 3} = 7$@zT:b{ DM+a 1'U; 5;9@n-:`:(:Z:fq -I9(G`-1 4a'U;(1| `IG`-1 4a'U;(1(<-9( 0yb; P'R| (IG`-1 4a'U;(1(<-9( - 4" /'d; P'R| M+b>%9?}9?}9t?}?t9:`4='j -I9@KT:lM}?@z:b{ `I9@K:d{}?@K:lM (I9@nF~IFoq?@nF~ITFq d 9 ? 9t?   @>0cMd=>MeD QJT"!" #+fgV$'>%'/'(Q([(4[',(<-F!N $%3i(G •- ‚LFC -I MK MK xf xg y = F[(!, * 47$( r* 4CuKFM7$KFM(YF[(!, 7$ MK ≠ xf  `I MK T xfy n =  l]D4#ƒ' >w@'U;F[(!, (<-uKFM l]D4( „' >w#$C MK ≥ xf  (I MK MK xf xg y = F[(!, * 47$( r* 4CKFMF[(!, 7$uKFMA ZI MKMK xgxfy ±= F[(!, * 47$( r* 4C MK ≥ xf 7$ MK ≥ xg  0h25(Y" #+fg 1 $%3iuF[(!, 'aB $%3i!E`4='aB= MKMK:} TTT xfxfxxKxx <⇒<∈∀  $%3i ,( `4='aB= MKMK:} TTT xfxfxxKxx <⇒<∈∀ ‚CNFS'3…`4=' 4a(<- $%3i:'-(P' …( 4C i&((jfg T T MKMK xx xfxf − −  l=K‚MA@AI3i!E`4= l=K‚M•@AI3i ,( `4= $+fg"kEl 1 $%3iuF[(!, 'aX $%3i( „uKFM@uKFM  $%3i#ƒuKFM@uKFM ‚"L l$%3i( „ U'†('#$%'†(!i4F l$%3i#ƒ Ui('18!&#$%')%!i4F 3+fg2Q"Z( #+fg[m#Tn2 l=-A' > I3i!E`4=CKLBM l=-•' > I3i ,( `4=CKLBM 2W(!+fg baxy +=  "*oG' N7‡!E' ,@-Fl`7$@-Fˆ`E4F1[!4 -4; P!' +j% ; ZD4'†( 1$  P(O#84#$!E' , $%3i!‰( 1 ^+fg2Q"# ‚"2,p"%I'f(*+*o lw[(!, !r (<-KM#$ lw[(!, '†(!i4F7$ D(<-KM lw[(!, '18!&([(4-1!4N%(<-KM7D4'†('7$'†( 1$ K=(GMw[(!,  ' a%%&'3i!4N%(<-KM!N7‡( 1( . F[( lVU;`Q`4=' 4a l]‡!E' ,(<-KM Š"LC l=-A' >KM(G`"#‹%x-#a l=-•' >KM(G`"#‹%x-Fi o   M> M+>%'U;F[(!, (<-([( $%3i3-C -I p b T − + = x x y `I MTMKbK TMbK −− −− = xx xx y (I MMKbTK bd xx xx y −− −+− = ZI boT  T ++ + = xx x y fI T −−−= xxy M+B Q13['3…`4=' 4a7$7‡!E' , $%3iC -I b +−= xy `I T −= xy (I xzy T −+= ZI b T += xy fI obT T −+−= xxy M+$wS''. ( „#ƒ(<-([( $%3i3-C -I bT T −+= xxy `I x y  = (I TT ++−= xxy M+3w[(!, -:`(<-!E' , I3i@-Fl`'1([(' 5;3-C -I4x-9K}TM7$!4N%?KT}M `I4x-9K}M7$3131'†(F (I4x-KT}oM7$(G 3iG(`j:o ZI4x-ŒKd}TM7$7G(7D4!' + o T  + − = xy M+^ >%`i $%3i`U( /'(G!E' ,#$`i!' +(•' -'84`i!r (<- > 7  Ui(#$%')%!i4F:`4='%&'!r (<- > 7#$9Kb}M M+_w[(!, KM  T ++= bxaxy '1([(' 5;3-C -I4x- -4!4N%9K}TM7$?KT}M `IG!r ŽK}M (I•-K}dM7$(G'!&`j M+`>%KM cxaxy +−= d T  -I4x-9K}TM7$?KT}bM `IG 1$ !&!r #$b7$!4x-KT}M @Oq=>OqD Br@As I*+2YE8QC #,-.(Xt2Q"Z(#Tn2mu l=  ≠ a C; ^'> (G 4%Z /' l=-@}  ≠ b C; ^'> 7 4% l=-@}`@C;'73i 4% 2,-.(Xt2Q"#  T =++ cbxax  ‚=-@C;''•' P ;'`U( /' K4Q4'^'… 'aM ‚=  ≠ a C l  <∆ C; ^'> 7 4% l  =∆ C;'(G 4%*S;  l  >∆ C;'(GT 4%; )`4' a b x T ∆−− = 7$ a b x T ∆+− = m   !EF=&(-43i T } xx #$([( 4%(<-;' T  ax bx c + + = * 47$( r* 4' 1Q%‰ ' (C a b xx − =+ T 7$ a c xx = T   $(v8[*J(2Q"Z(*+2Q"#  #,-.(Xt"4#w(X'.]Z8.(X!(8[(g K;x. MKMK xgxf =  "Cl2'!I*C MK ≥ xf l?> ; ^ -47=:4Q4'>% 4% lB=' 5;!I*7$!--'U; 4a%(<-; ^'>  "Cl    ≥= <−= MKMKMK MKMKMK xfkhixgxf xfkhixgxf  K;x. MKMK xgxf =    ⇔ = −= MKMK MKMK xgxf xgxf 2,-.(Xt]x. MKMK xgxf = •@A   T ( ) ( ) ( ) ( ) g x f x f x g x ≥   ≥   =  ".I%"C  l2'!*(G •- l?> ; ^T7=4Q4'>% 4% ",-.(Xt"4#wyz8   K".I  l2'!I*%‘3i(G •-  l•!E%‘3iE44Q4'>% 4%K( 0J!I*M ],-.(Xt(X\.J,-. MK Td =++ cbxax K".I   l2' I T ≥= tkđxt   l -'7$1;'KM4Q4'>%'@AF KLF=".I2J( MKMK xgxf ≥ { MKMK xgxf ≤ { MKMK xgxf > { MKMK xgxf < *+ MKMK xgxf ≥ { MKMK xgxf ≤ { MKMK xgxf > { MKMK xgxf < "|.(,-.(h.IJ,-. (XtDj(#[}]Z8~m•(+]Z8~€{•{ ≤≥ } • 3J(2Q"##w N4Q4 ;'`U( -4 -4’:'-' ZYC;;' =:;;(&:;;!2'’; †]4(( 6;;$1 (O'“' &(7$1([(; ^'> (†' N M> M+4Q47$`4#U;'C -I mxxm TT T +=+ `I TMK −+=− mxmxm (I TcMK T =−+− xxm ZI MbKT T =+++− mxmmx c   M+>%%!N;'3-(GT 4%'[4Z/ bMTKMK T =−+−++ mxmxm M+$>%%!N`;'3-7 4%C T K TM TK M T m x m x m − + + + > M+3C 1;'%F T ˆTK%lTMFld%l€@, %!N; ^'> C -IGT 4%; )`4'`IGT 4%'[4Z/ (IGT 4%!")%ZIGT 4%; )`4'' 1QC o T T  T −=+ xx  M+^ 1; ^'>  bMKd T =+++− mxmmx -I, %!N; ^'> (GT 4%'[4Z/ `I, %!N; ^'> (G 4%$/;b#P 4%*4- (I, %!N; ^'> (GT 4%3-1( 1C b  T =+ xx M+_ 1; ^'>  TTMbTK TT =++++− mmxmx -I, %!N; ^'> (GT 4% T } xx ' 1Q T Txx =  `I4Q43R; ^'> (G -4 4% T } xx ‰'>% ' (#4a 4s-([( 4%!&( #U;7D4' -%3i% M+`4Q4([(;'7$([(`;'3-C -I dcT =+− xx `I pTc€ T −=+− xxx  (I Tob Td ≤−+ xx  ZI MbTMKcTK T >−−+ xxx  fI oT +≤− xx uI T  T ≤ − + + x x x x I dbbTT ≥−−− xx I xxxx bbMbKT TT +=−+ ; I2'’; † Cb T ≥+= tđkxxt M+a>%([(4[',(<-F' ”-%‰%e4`;'3- I  T < − x x  TI bTT +<− xx bI T T  T d d bx x x < − − + dI x x x > − +   oMT T b b d x x − − − ≥ b T mM T  Tx x ≥ + − M+b4Q4 ;'7$`;'3-C -I    =− =+ T md TT yx yx  `I    =++ =+++ o € TT yxxy yxyx  (I    =+ = T€ pm TT yx yx ZI    =− = oo Td TT yx yx fI    =− =− xyx yxy bT bT T T uI    =+ =+ b dT TT TT yxyx yx I      + < − −<+ o b d bT b € o b xx x x x I      +>+ +< + dpT€odT ToT T b€ xx x x €   @=Md‚ƒ=>MdOqD Br@As MZ(„.(4" #M25}(,-.,-. • ?4=!k4'^!^`!'' ((P(I%-%&'!4" 4N 4a 2M(…fC]D4 -43i-}`* )%' >C ba ba  T ≥ +  X/g@HFQ--@` KyX….]D43i* )%}'-(GC n n n aaa n aaa   T T ≥ +++ X/g@HFQ-* 47$( r* 4C n aaa ===  T ";\.M((tB{" #fg • -43i* )%-7$`(G'k* !k4' >'.( -`!8'* 4-@` • -43i* )%-7$`(G'.( * !k4' >'k-l`!8'V* 4-@` ;Z8" #!(4"2Q"Z( -I, #JCKLBM `I]U!†!, #J4Q4`;'C l?;''.( l?;'( -%‘ l?;'( -’'1Z/4[',''!i4 $;Z8" #(#(4"2Q"# -I, #JCKLBM `I]UZ†C l?;'' ^'.( l`;'`U( -4 ‚ : T >++∈∀ cbxaxRx    ⇔ > <∆   a ‚ : T <++∈∀ cbxaxRx    ⇔ < <∆   a M> M+4. -I bbdd abbaba +≥+ `I cabcabcba ++≥++ TTT (I abcaccbba €MMKMKK ≥+++ 7D4 }} ≥ cba  ZI pM  MKK >++++ cba cba 7D4 }} > cba p fI a a b b a c b b a +++ T T T T 7D4 }} > cba M+C>%V7$(<- I3iK=(GM -IuKFM@FKFM7D4 x `IuKFM@TFKbFTM7D4 b T x (I T MK + ++= x xxf 7D4FAT M+$wS'Z/`4N' (3-C -I ( ) ( ) ( ) 2 5 6 2 1 4 3 x x x g x x + = `IuKFM@bFKTFlcMKpbFM M+34Q4([(`;'3-C -I 9 5 1 x x + > `I 3 47 4 47 3 1 2 1 x x x x > (I T T xxx ZI Tdb T ++ xxx @=cPD Ă ÂĂÊÔ ƠƯĂĐă âÊêôƠƯĂĐă Ă ơÊ-đĂ ơÊ ƠƯĂĐă ĂàêảãđđÊáƠƯĂĐă M> ƠđạằẳẵắạẵắƠẵắặầẩẫạấạƯậèạẫăẵẻẽẽéẹềẫểẻễẵạếắạệàẵìỉ ầƠ b b To To bo do d d bo do bo To do b b b d b To do do bo bo b d d d bo bo bo bo ẫăặạĩệíĩịìẫầắòêỏẵõíĩịìẫ ằăóọầồổƠ 1 ẳẵắổạỗẵằốẵ 1 ẳẵắổạỗẵằốẵặ ẹăộẫờởẳẹềẫẹỗằăỡóọẵạồẵớợịớạùẵắồổìẵắẹềẫẹủẹầĩệạẵắ ƠđạũầĩệẹúằẳẵắổạỗẵằốẵốẵặắạợổầổẵạùẫƠ ạú Đạẳẵắ ốẵƯẵĩă ốẵặƯụĩă zm}{ p Từ T zp}p{ Tdddừ b zpT}pd{ p dTTTừ d zpo}pc{ m bbdừ ửẵắ @do ừ -M ữằĩứíựạòẵạẹỳốẵ ằăữằĩứíựạòẵạẹỳốẵặ (M ữằĩứíựíùỷẵắắặổạẩẹốẵ ỹăữằĩứíựạòẵạởậ ƠêíỳỹĩỳẹạĩĩờủọƯíỏẵõíỳỹĩầẹăẫạíùýẹũầĩệẫƠ dd db dT ddo dp om oT obd ooo om omd ocT ocd o oc o op op opb opd m mb mo mT [...]...Trng THPT Nguyn Cụng Tr CNG ễN TP TON 10- NC a) Tinh sụ trung binh, sụ trung vi va mụt b) Lõp bang tõn sụ ghep lp gụm 6 lp vi ụ dai khoang la 4: nhom õu tiờn la [40;44) nhom th hai la [44;48); Bai 4: Thng kờ im toỏn ca mt lp 10D1 c kt qu sau: im 1 2 3 4 5 6 7 8 9 10 Tn s 1 2 4 3 3 7 13 9 3 2 Tim mụt ?Tinh sụ iờm trung binh, trung vi va ụ lờch chun?... la trung nhau BI TP: 2 3 3 2 3 1 ; ; 1; ; ; ; Bai 1: ụi cac sụ o goc sau ra ụ: 3 5 10 9 16 2 Bai 2: ụi cac sụ o goc sau ra raian: 350; 12030; 100 ; 150; 22030; 2250 Bai 3: Mụt cung tron co ban kinh 15cm Tim ụ dai cac cung trờn ng tron o co sụ o: a) 16 b) 250 c) 400 - 11 - d) 3 Trng THPT Nguyn Cụng Tr CNG ễN TP TON 10- NC Bai 4: Trờn ng tron lng giac, xac inh cac iờm M khac nhau biờt rng cung AM co... sin15 ) a) A = sin Bai 9: Khụng dung bang lng giac, tinh cac gia tri cua cac biờu thc sau: a) P = cos 2 3 cos + cos 7 7 7 b) Q = cos Bai 10: Rut gon biờu thc: - 14 - 2 4 6 + cos + cos 7 7 7 Trng THPT Nguyn Cụng Tr sin 2 + sin a) A = 1 + cos 2 + cos CNG ễN TP TON 10- NC b) B= 4sin 2 1 cos 2 2 c) 1 + cos sin 1 cos sin B/ HèNH HC CHNG I: VECT 1) + Hai vộc t c gi l cựng phng : nu giỏ ca chỳng... p = 1 (a + b + c) 2 BI TP: Bai 1: Cho ABC cú c = 35, b = 20, A = 60 0 Tớnh ha; R; r Bai 2: Cho ABC cú AB =10, AC = 4 v A = 60 0 Tớnh chu vi ca ABC , tớnh tanC Bai 3: Cho ABC cú A = 60 0 , cnh CA = 8cm, cnh AB = 5cm a) Tớnh BC b) Tớnh din tớch ABC c) Xột xem gúc B tự hay nhn? d) Tớnh di ng cao AH e) Tớnh R Bai 4: Trong ABC, bit a b = 1, A = 30 0 , hc = 2 Tớnh Sin B Bai 5: Cho ABC cú a = 13cm,... phng trỡnh ca ng thng (D) trong cỏc trng hp sau: a/ (d) qua M (1; 2) v vuụng gúc vi t : 3x + y = 0 x = 2 5t y = 1+ t b/ (d) qua gc ta v vuụng gúc vi t Bai 10: Cho tam giỏc ABC cú nh A (2; 2) a/ Lp phng trỡnh cỏc cnh ca tam giỏc bit cỏc ng cao k t B v C ln lt cú phng trỡnh: 9x 3y 4 = 0 v x + y 2 = 0 b) Lp phng trỡnh ng thng qua A v vuụng gúc AC Dang 2: Chuyờn ụi cỏc dang phng trinh ng thng x =... = 0 va (d2): 6x 4y 7 = 0 x = 1 5t y = 2 + 4t x = 6 + 5t y = 2 4t x = 6 + 5t d) (d1): 8x + 10y 12 = 0 va (d2): y = 6 4t c) (d1): va (d2): Dang 4: Goc va khoang cỏch Bai 1: Tinh goc gia hai ng thng a/ (d1): 2x 5y +6 = 0 va (d2): x + y 3 = 0 x = 6 + 5t y = 6 4t b) (d1); 8x + 10y 12 = 0 va (d2): c) (d1): x + 2y + 4 = 0 va (d2): 2x y + 6 = 0 Bai 2: Cho iờm M(1; 2) va ng thng... 3 Bai 10: Cho ng thng ( ): 2x y 1 = 0 va iờm M(1; 2) a/ Viờt phng trinh ng thng ( ) i qua M va vuụng goc vi ( ) b/ Tim toa ụ hinh chiờu H cua M trờn ( ) c/ Tim iờm M ụi xng vi M qua ( ) NG TRON 1 Phng trỡnh ng trũn tõm I(a ; b) bỏn kớnh R cú dng : (C ) : ( x a ) 2 + ( y b) 2 R 2 (1) 2 2 x + y 2ax 2by + c = 0 hay (2) 2 2 2 vi c = a + b R - 21 - Trng THPT Nguyn Cụng Tr CNG ễN TP TON 10- NC... thỡ phng trỡnh trờn l phng trỡnh ng trũn Bai 1: Trong cac phng trinh sau, phng trinh nao biờu diờn ng tron? Tim tõm va ban kinh nờu co: a) x2 + 3y2 6x + 8y +100 = 0 b) 2x2 + 2y2 4x + 8y 2 = 0 2 2 c) (x 5) + (y + 7) = 15 d) x2 + y2 + 4x + 10y +15 = 0 Bai 2: Cho phng trinh x2 + y2 2mx 2(m 1)y + 5 = 0 (1), m la tham sụ a/ Vi gia tri nao cua m thi (1) la phng trinh ng tron? b/ Nờu (1) la ng tron... (C ) bit: x = 1 + 2t : y = 2+ t va (C): (x 1)2 + (y 2)2 = 16 Bai 6: Viờt phng trinh ng tron i qua A(2; 1), B(4;1) va co ban kinh R = 10 Bai 7: Cho I(2; 2) Viờt pt ng tron tõm I va tiờp xuc vi ( d ): x + y 4 = 0 - 22 - Trng THPT Nguyn Cụng Tr CNG ễN TP TON 10- NC Dang 3: Lõp phng trinh tiờp tuyờn Bai 1: Lõp phng trinh tiờp tuyờn vi ng tron (C) : ( x 1)2 + ( y + 2) 2 = 36 tai iờm Mo(4; 2) thuục... Hypebol (H) la: Hai tiờu iờm : F ( p ;0) 2 ng chun : x = p 2 BI TP: Bi 1: Lp phng trỡnh chớnh tc ca Hypebol (H) trong cỏc trng hp sau: - 25 - Trng THPT Nguyn Cụng Tr CNG ễN TP TON 10- NC a/ di trc thc l 8 v tiờu c bng 10 b/ Tiờu c bng 20 v mt tim cn cú phng trỡnh 4x 3y = 0 Bi 2: Lp phng trỡnh chớnh tc ca Hypebol (H) trong cỏc trng hp sau: a/ (H) cú mt tiờu im l ( 5; 0 ) v cú trc thc bng 8 b/ (H) . r-'. ( /'!2('(<-'U; 5; ]XC9@nhhhhhhhhq Là tập hợp khôpng có phần tử nào,kí hiệu là ∅ VJC∅@ { } { } . ≠ ∅ QJ"' # A. B = = M> M+^]4='([('U; 5;3-ZD4Z8#4'*a; P'RC - 2 A {x N |x 7 vaứ x 10} . = < ` B {x N |x 15 vaứ x laứ boọi cuỷa 2} = ( C {x N | x 4 vaứ x laứ boọi cuỷa 3} =. 36}. = ` B {3, 5} = ( 1 1 1 1 1 C 1, , , , , 4 9 16 25 36 = Z 1 1 1 1 1 D , , , , 2 4 6 8 10 = f { } E (0, 2); (1, 3) = u v@ { } 9, 36, 81,144 { } G 3, 9, 27, 81 = M+`wS'x-

Ngày đăng: 14/07/2014, 22:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w