Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 70 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
70
Dung lượng
4,96 MB
Nội dung
Su tm Phần I : Đại số Chuyên đề 1: Căn Thức rút gọn biểu thức, chứng minh biểu thức A. Kiến thức cần nhớ: - Cách đặt ĐKXĐ của một biểu thức - Cách quy đồng khử mẫu hai hay nhiều phân thức B. Bài tập Rút gọn Các căn thức sau: Bài 1. Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp: a, 9 196 49 16 81 25 b, 81 34 2. 25 14 2. 16 1 3 c. 567 3,34.640 d, 22 511.8106,21 Bài 2. Phân tích các biểu thức sau thành các luỹ thừa bậc hai: a, 8+2 15 ; b, 10-2 21 ; c, 12- 140 d, 5 + 24 ; e, 14+6 5 ; g, 8- 28 Bài 3. Phân tích thành thừa số các biểu thức sau: a, 1 + 1553 ++ b, 21151410 +++ c, 6141535 + d, 3 + 8318 ++ e, xy +y 1xx ++ g, 3+ x +9 -x Bài 4. Rút gọn các biểu thức sau: a, ( 10238 + )( 4,032 ) b, ( 0,2 3.)10( 2 + 2 2 )53( c, ( 714228 + ). 7 + 7 8 d, ( 15 +50 5 4503200 ) : 10 e, 2 422 )1(5)3(2)32( + g, ( 6:) 3 216 28 632 h, 57 1 :) 31 515 21 714 ( + i, 1027 1528625 + ++ Bài 5. Chứng minh các đẳng thức sau: a, ba ba 1 : ab abba = + ( a, b > 0 và a b ) b, ( 1+ a1) 1a aa 1)( 1a aa = + (a > 0 và a 1);c, ( a a1 aa1 + )( a1 a1 ) 2 =1 (a > 0 và a 1) d, a bab2a ba . b ba 22 42 2 = ++ + (a+b>0, b 0) Bài 6. Rút gọn rồi tính giá trị của các biểu thức sau: a, 2 a4a129a9 ++ với a = -9 ; b, 1 + 4m4m 2m m3 2 + với m<2 c, a4a25a101 2 + với a= 2 ; d, 4x- 1x6x9 2 ++ với x=- 3 e, 6x 2 -x 6 +1 với x = 2 3 3 2 + Bi 7:Rút gọn Các biểu thức sau: Trang: 3 Su tm 42 44 2 + = x xx A 144 1 : 21 1 14 5 21 2 1 22 ++ + = xx x x x x x B xy y yx yx yx yx C + + = 2 2222 xxxxx D + + + + = 1 1 1 1 1 1 : 1 1 1 1 + + = 1 2 1 1 : 1 1 x xxxx x E a x xa a x xa F 22 22 + + + + = Gợi ý: Khi làm các bài toán này cần: - Đặt ĐKXĐ? - Quy đồng khử mẫu, rồi làm gọn kết quả thu đợc 1 2 2 1 2 2 khix A khix = < 2 1 2 B x = 2 y C x y = 1 D x = 1x E x = Một số loại toán thờng kèm theo bài toán rút gọn I.Tính toán một biểu thức đại số Ph ơng pháp: Để tính giá trị của biểu thức P(x), biết x=a, ta cần: +Rút gọn biểu thức P(x). + Thay x=a vào biểu thức vừa rút gọn *Ví dụ: xx xxx A 32 96 2 2 ++ = Tính giá trị của A biết 18=x . 22 1 22 1 + = aa B Tính giá trị của B biết(a-6)(a-3)= 0 4 5 : 2 3 2 2 22 + + = xxx x x x x C Tính giá trị của C biết 2x 2 +3x =0 12 12 : 1 1 . 1 1 1 2 2 3 ++ + + ++ + = xx x x xx x x x D Tính giá trị của D biết x= 2007 2005 ( ) 9 961 2 2 ++ = x xxx E Tính E biết 16=x 4 4ã2 2 2 = xx xa F Tính F biết x= a a + 1 . Đáp án: 1 khi 3 3 3 (2 3) x x A khi x x x = < ; 4 2 B a = + & B=-4/5 ( 2) 2 & 5 5 x C C x + = = Trang: 4 Su tm 1 1 x D x + = 1 x -3 3 1- x khi x < -3 x -3 x khi x E = II.Tìm giá trị của biến (ẩn) khi biết giá trị của biểu thức: Ph ơng pháp: Để tìm giá trị của x khi biết giá trị của P(x) =a , ta cần : + Rút gọn biểu thức P(x) + Giải phơng trình P(x) =a. Ví dụ: + + = 1 1 1 1 . 2 1 2 2 a a a a a a A a) Tìm a để A>0 b) Tính giá trị của a để A=0 + + + = 13 23 1: 19 8 13 1 13 1 x x x x xx x B Tìm x khi B=6/5 + + += 1 2 1 1 : 1 1 xxxx x x x x C a) Tính C biết x= 324 + b)Tìm x khi C >1. + + + + = 1 2 11 1 : 1 1 1 1 2 x x x xx x x x D a) Tính D khi x= 324 + b)Tìm x để D=-3 E= + 1 1 1: 1 1 3 x x x x a) Tính E khi x= 14012 + b) Tính x khi E >5 15 11 3 2 2 3 2 3 1 3 x x x F x x x x + = + + + a)Rút gọn F b)Tính x để F=1/2 ( ) ( ) ( ) ( ) ( ) 2 2 2 3 1 4 2 3 1 3 x x x G x x = + a)Rút gọn G c)Tính G khi 223 +=x b)Tìm x để G >1 Đáp án: 1 ; 1 a A a a = < ;a=1 1 ; 4; 4 3 1 x x B x x x + = = = 1 6 3 3 ; ; 1 or x < -2 1 3 x x C C x x + + + = = > 2 ; 1 x D x = + 2 1 ; 0 2 x E x x = < < ; 7 9 5 2 3 x x F x x + = + 2 3 2 2 1 ; 2 x < -1;G = 1 2 2 1 x G x or x + = > = + + III. Tìm giá trị của biến x biết P(x) thỏa mãn điều kiện nào đó Ph ơng pháp: Trớc hết hãy rút gọn giá trị của biểu thức, sau đó căn cứ vào điều kiện nêu ra của bài toán mà lập luận tìm ra lời giải, Chẳng hạn: Tìm điều kiện của x để giá trị của biểu thức là nguyên? Ta cần đa biểu thức rút gọn về dạng : R(x)= f(x)+ ( ) a g x sau đó lập luận: ( ) ( ) g(x) R x Z a g x hay M là ớc của a (a là hằng số) Trang: 5 Su tm Ví dụ : 1) ( ) ( ) 2 2 4 2 3 6 9 x x x A x x = + a) Rút gọn A b)Tính xZ để AZ? 2) xxxx x B + + + + = 2 1 6 5 3 2 2 Rút gọn B, Tính xZ để BZ? 3) 2 2 : 11 + + + = a a aa aa aa aa C a)Tìm a để biểu thức C không xác định b)Rút gọn C c) Tính aZ để C Z? 4) 11 1 1 1 3 + + + = x xx xxxx D a)Rút gọn và tính giá trị của D khi x=5 b)Tìm giá trị nguyên dơng của x để DZ ? 5)E= + 1 1 1: 1 1 3 x x x x : x x 2+ Tính xZ để E Z? Đáp án: 4 3 3 A x = ; 4 2 1 2 2 x B x x = = ; 2 4 8 2 2 2 a C a a = = + + ; ( ) 2 1 1D x= + ; 2 4 1 2 2 x E x x = = + + IV. Một số thể loại khác Bài 1. Chứng minh rằng: a) ( ) 2004200522006.20051 2 =+ b) 2725725 3 3 =+ c) ab a a b a b abaabb a bba aba 11 1. 2 23223 2 32 2 + = + + Bài 2. Cho B= + ++ + + 1 1 1 1 1 2 :1 x x xx x xx x a) Rút gọn B b)CMR : B>3 với mọi x>0 ;x 1 . Bài 3. Cho C= 632ab 6 632 32 +++ + + ba ab baab ba a) Rút gọn C b) CMR nếu C= 81 81 + b b thì 3 b a . Bài 4. Cho ( ) xxbb xb xb xxbb xb xb D + + = 2 . a) Rút gọn D b) So sánh D với D . Bài 5. Cho + = 1 12 2 41 21 :1 41 4 x x x x x xx E a) Rút gọn E. b) Tìm x để 2 EE > . c) Tìm x để 4 1 >E Bài 6. Cho ab ba bab b bab a F + + + = a) Tính F khi a= 324;324 =+ b Trang: 6 Su tm b) CMR nếu 5 1 + + = b a b a thì F có giá trị không đổi. Bài 7. Cho biểu thức: A 1 = ( x1 1 x1 1 + + ) : ( x1 1 x1 1 + ) + x1 1 a) Rút gọn A 1 . b) Tính giá trị của A 1 khi x=7+4 3 . c) Với giá trị nào của x thì A 1 đạt giá trị nhỏ nhất ? Bài 8. Cho biểu thức: A 2 = 22 2 )2x()1x2( 4)1x( ++ a) Tìm x để A 2 xác định. b) Rút gọn A 2 . c) Tìm x khi A 2 =5. Bài 9. Cho biểu thức: A 3 = ( 1x 1x 1x 1x + + ):( 1x 1 1x x 1x 2 2 + + ) a) Rút gọn A3 b) tìm giá trị của A 3 khi x= 83 + c) Tìm x khi A3 = 5 Bài 10. Cho biểu : A 4 = ( aa 1aa aa 1aa + + ): 2a 2a + a) Với giá trị nào của a thì A 4 không xác định. b) Rút gọn A 4 . c) Với giá trị nguyên nào của a thì A 4 có giá trị tự nguyên ? Bài 11. Cho biểu thức: B 1 = xx xx2 1x x a) Rút gọn B 1 b) Tính giá trị của B 1 khi x=3+ 8 c) Tìm x để B 1 > 0 ? B 1 < 0? B 1 =0 Bài 12. Cho biểu thức: B 2 = 6a2 a3 6a2 3a + + a) Rút gọn B 2 b) Tìm a để B 2 < 1? B 2 > 1? Bài 13. Cho biểu thức: B 3 = ( 1+ 1x x + ):( 1xxxx x2 1x 1 + ) a) Rút gọn B 3 b) Tìm x để B 3 > 3? c) Tìm x để B 3 =7. Bài 14. Cho biểu thức: B 4 = ( xx 1 1x x ):( 1x 2 1x 1 + + ) a) Rút gọn B 4 b) Tính giá trị của B 4 khi x=3+2 2 c) Giải phơng trình B 4 = 5 Bài 15. Cho biểu thức: B 5 = ( ab a ba a + + ):( ab2ba aa ba a ++ + ) a) Tìm điều kiện của a để B 5 xác định. b) Rút gọn B 5 . c) Biết rằng khi a/b = 1/4 thì B5 = 1, tìm giá trị của b. Bài 16. Cho biểu thức: C 1 = 4x4x4x4x ++ a) Rút gọn C 1 b) Tìm x để C 1 = 4 Bài 17. Cho biểu thức: C 2 = ab ba aab b bab a + + + a) Rút gọn C 2 b) Tính giá trị của C 2 khi a = 324 + , b = 324 c) Chứng minh rằng nếu a/b = a+1/b+5 thì C 2 có giá trị không đổi Bài 18. Cho biểu thức: C 3 = 6b3a2ab ab6 6b3a2ab b3a2 +++ + + Trang: 7 Su tm a) Chứng minh rằng 0b thì C 3 có giá trị không phụ thuộc vào b b) Giải phơng trình C 3 = -2. c) Tìm a để C 3 < 0? C 3 > 0? d) Tìm giá trị nguyên của a để C 3 có giá trị nguyên. e) Chứng minh rằng nếu C 3 = b+81/b-81, khi đó b/a là một số nguyên chia hết cho 3. Bài 19. Cho biểu thức: C 4 = ( 1x2x 2x 1x 2x ++ + ). 2 1x2x 2 + a) Xác định x để C 4 tồn tại. b) Rút gọn C 4 c) Chứng minh rằng nếu 0 < x < 1 thì C 4 > 0. d) Tìm giá trị của C 4 khi x = 0,16. e) Tìm giá trị lớn nhất của C 4 . g) Tìm x thuộc Z để C 4 thuộc Z. Bài 20. Cho biểu thức: C 5 = 3223 3223 yxyyxx yxyyxx + + a) Rút gọn C 5 . b) Tính giá trị của C 5 khi x = 3 , y = 2 . c) Với giá trị nào của x, y thì C 5 = 1. Bài 21. Cho biểu thức: D 1 = ( x1 1 1xx x 1xx 2x + ++ + + ): 2 1x a) Rút gọn D 1 . b) Chứng minh D 1 > 0 với 1x,0x . Bài 22. Cho biểu thức: D 2 = ( xy yx yx yx 33 + ): yx xy)yx( 2 + + a) Xác định x, y để D 2 có nghĩa. b) Rút gọn D 2 . c) Tìm giá trị nhỏ nhất của D 2 . d) So sánh D 2 và 2 D . e) Tính giá trị của D 2 khi x = 1,8 và y = 0,2. Chuyên đề 2: Hàm số bậc nhất y=ax+b Kiến thức: Cho hàm số y=ax+b (a0) - Hàm số đồng biến khi a>0; nghịch biến khi a<0 - Nếu toạ độ (x 0 ;y 0 ) của điểm A thoả mãn hàm số y=f(x) thì điểm A thuộc đồ thị hàm số này. - Ngợc lại, nếu điểm A(x 0 ;y 0 ) nằm trên đồ thị của hàm số y=f(x) thì toạ độ (x 0 ;y 0 ) của A thoả mãn hàm số y=f(x). - Cho hai đờng thẳng (d 1 ): y=ax+b & (d 2 ): y= a 1 .x+b 1 (a 0 ; a 1 0) + (d 1 ) // (d 2 ) a=a 1 & b b 1 + (d 1 ) (d 2 ) a= a 1 & b= b 1 + (d 1 ) cắt (d 2 ) a a 1 & b b 1 + (d 1 ) (d 2 ) a.a 1 =-1 Bài tập vận dụng Bài 1:Cho hàm số y= mx-2m+5.CMR hàm số luôn đi qua điểm cố định với mọi m. Bài 2: Cho đờng thẳng (d); y=(m-2)x-m+4.CMR (d) luôn đi qua điểm cố định với mọi m Bài 3: Cho các đờng thẳng (d 1 ): y=mx-2(m+2) (m 0) và Trang: 8 Su tm (d 2 ): y= (2m-3)x +(m 2 -1) (m 3/2): a) CMR: (d 1 ) & (d 2 ) không thể trùng nhau với mọi m. b) Tìm m để (d 1 ) // (d 2 ); (d 1 ) cắt (d 2 ); (d 1 ) (d 2 ) Bài 4: CMR: 3 đờng thẳng sau đây đồng quy: (d 1 ): y=-3x (d 2 ): y=2x+5 (d 3 ): y=x+4 Bài 5: Tìm m để ba đờng thẳng sau đồng quy:(d 1 ):y=x-4; (d 2 ): y= -2x-1;(d 3 ): y= mx+2 Bài 6: Tính diện tích giới hạn bởi các đờng thẳng :(d 1 ): y= 1 3 x ;(d 2 ):y=-3x ;(d 3 ): y=-x+4 Bài 7: Cho đờng thẳng (d 1 ):y=4mx - (m+5) & (d 2 ): y= (3m 2 +1)x+m 2 -4 a) CMR: (d 1 ) luôn đi qua điểm A cố định và (d 2 ) luôn đi qua điểm B cố định b) Tính khoảng cách AB. ; c) Tìm m để (d 1 ) // (d 2 ) Bài 8. Cho hai hàm số : y = (k + 1 )x + 3 và y = (3-2k)x +1 Với giá trị nào của k thì đồ thị của hai hàm số cắt nhau? Song song với nhau? Hai đờng trên có thể trùng nhau đợc không ? Bài 9. Viết phơng trình đờng thẳng :a. Có hệ số góc bằng 3 và đi qua điểm P( 2 5 ; 2 1 ) b. Có tung độ gốc bằng -2,5 và đi qua điểm Q(1,5 ; 3,5) c. Đi qua hai điểmđiểm M(1 ; 2 ) và N (3 ; 6 ) d . Song song với đờng thẳng y = 2x - 3 và đi qua điểm ( 3 4 ; 3 1 ) Bài 10.Cho 3 đờng thẳng : y=2x+1(d 1 ) ; y=-x-2 (d 2 ); y=-2x-m (d 3 ) a. Tìm toạ độ giao điểm của hai đờng thẳng (d 1 ) & (d 2 ) b. Xác định m để 3 đờng thẳng đã cho đồng quy Bài 11. a. Vẽ đồ thị của các hàm số trên cùng hệ trục toạ độ :y=2x (1);y=0,3x (2); y=-x+6 (3) b. Gọi các giao điểm của đờng thẳng có phơng trình (3) với các đờng thẳng (1), (2) thứ tự là A,B: tìm toạ độ của các điểm A,B c.Tính các góc của tam giác OAB Chuyên đề 3:Phơng trình và hệ phơng trình bậc nhất Bất phơng trình I.Ph ơng trình bậc nhất 1 ẩn số Ph ơng pháp: ax+b=0 ax=-b x=-b/a Nếu phơng trình không có dạng tổng quát thì cần biến đổi đa về dạng tổng quát rồi tính * Ví dụ: Bài 1:Giải các phơng trình: a) ( ) ( )( ) 223 2 +=+ xxx b) ( )( ) ( )( ) ( )( ) 4 12 12 52 3 51 + = ++ ++ xxxxxx c) 0 22 3 1 12 22 1 2 = + + ++ + x xx x x * Ph ơng trình dạng )()( xgxf = (1) Sơ đồ giải: [ ] 2 ( ) 0(2) ( ) ( ) ( ) ( ) (3) g x f x g x f x g x = = Giải (3) rồi đối chiếu với điều kiện(2) để loại nghiệm không thích hợp, nghiệm thích hợp là nghiệm của phơng trình đã cho. Ví dụ: Trang: 9 Su tm Bài 2:Giải phơng trình: a) 783 =x b) xxx =+ 21 2 c) ( ) 2 2 3 3 1x x = * Ph ơng trình dạng )()()( xhxgxf =+ Sơ đồ giải:- Đặt đk có nghĩa của phơng trình 0)( 0)( 0)( xh xg xf - Bình phơng 2 vế , rút gọn đa về dạng(1) ví dụ: Bài 3:Giải phơng trình: a) xx =+ 15 b) xx =+ 11 c) 22 10 2x x = d) 3 1 1 2x x+ = Bài 4:Giải phơng trình a) 5 1x x = + b) 3 1 10 1 5x x+ + = * Ph ơng trình dạng ( ) ( ) ( )f x g x h x+ = Sơ đồ giải: - Đặt đk có nghĩa của phơng trình 0)( 0)( 0)( xh xg xf -Bình phơng hai vế(có thể chuyển vế hợp lí rồi bình phơng) sau đó cần phải đối chiếu nghiệm vừa tìm đợc với điều kiện! ví dụ: Bài 5:Giải phơng trình a) 5 3 2 7x x x+ + + = + b) 1 7 12x x x+ = IV. Bất ph ơng trình *Dạng 1: Bất phơng trình bậc nhất hai ẩn a.x+b>0 hoặc a.x+b<0 + Phơng pháp: ax+b>0 ax>-b x>-b/a nếu a>0 x<-b/a nếu a<0 + Ví dụ: Bài 6: Cho phơng trình: 32 16 3 1 52 xxx x + < a) Giải bất phơng trình b) Tìm nghiệm nguyên âm của bất phơng trình. Dạng 2: BPT phân thức B A >0 ,BPT tíchA.B>0 Trang: 10 Su tm *Cách giải: Mỗi bất phơng trình tơng đơng với 2 hệ bpt : 0 0 0 0 A B A B < < > > *ví dụ: Bài 6: Giải các phơng trình sau: 1)2x(3x-5) <0 2) 1 1 2 2 > ++ xx xx 3)(x-1) 2 -4 <0 *Dạng 3: ( ) ( ) ( ) f x a f x a f x a = = = Bài 7: Giải phơng trình: 14 += xx *Dạng 4: ( ) ( ) ( ) f x a f x a f x a > > < hoặc axfaaxf <<< )()( Bài 8: Giải phơng trình: 1 2 4 2 2 ++ xx xx V.Hệ ph ơng trình * Phơng pháp: *ví dụ: Cho hệ phơng trình 3 2 9 6 1 x my x y = = (1) a) Giải (1) khi m= 2 1 b)Tìm m để (1) có nghiệm duy nhất c) Tìm m để (1) có vô nghiệm d) Tìm m để (1) có nghiệm 0 0 x y > < Bài tâp Bài 1.Giải các phơng trình và bất phơng trình sau: a) 25 20 5 5 5 5 2 = + + x x x x x b) ( ) ( ) 1 2 7 1 4 12 2 2 + + x x x c) 836 2 =x d) 122 2 =+ xx d) e) ( )( ) 1223 =++ xxx f) 121 =++ xx g) 5144 2 =++ xxx Bài 2. Giải các hệ phơng trình sau a) 1 1 3 2 2 1 1 1 2 1 = = + yx yx b) 5 43 1 11 =+ = yx yx c) 15 151 += =+ xy yx d) 2 2 + x xx e) 05 05)(3)(2 2 = =++ yx yxyx f) 1233 8)(3)(5 2 =+ =+ yx yxyx Trang: 11 Su tm Bài 3.Cho hệ pt: 3 3 mx y x my + = + = a)Tìm m để hệ có nghiệm(x;y)=(-2;5) b)Tìm m để hệ có vô số nghiệm; vô nghiệm? ; c) Tìm m để hệ có nghiệm 0 0 x y < < Bài 4. Cho hệ phơng trình: 2 mx my m mx y m + = + = (m: là tham số) a)Giải và biện luận hệ phơng trình; b)Tìm điều kiện của m để hệ có nghệm thỏa mãn x>0;y<0. Bài 5.Tìm m để hệ phơng trình sau : 5 2 3 7 mx y x my = + = có nghiệm thỏa mãn điều kiện: x>0; y<0 Bài 6) Tìm a để hệ phơng trình: 3 ã 4 6 x ay a x y + = + = có n 0 thỏa mãn x>1; y>0. Bài 7)Tìm a để 3 đờng thẳng sau: (d 1 ) 2x +y =5 (d 2 ) 3x-2y =4 (d 3 ) a x +5y =11 đồng quy? Bài 8)Giải hệ phơng trình 2 3 8 3 1 x y x y + = = & 4 3 2 3 x y x y = + = Bài 9) Giải hệ phơng trình sau: a) 2 2 5 5 x y xy x y + + = + = b) 30 35 x y y x x x y y + = + = c) 64 1 1 1 4 xy x y = = d) 2 2 11 30 x xy y x y xy + + = + = e) 2 2 2 2 19 7 x y xy x y xy + + = + = Bài 10. Giải hệ phơng trình sau : 2 3 1 x y x y = + = 2 0 3 1 x y x y + = + = { 1y3x2 2y3x = =+ { 5y22x 101yx2 = =+ =+ =+ 2yx4 5y3x8 =+ = 5yx2 3yx2 = =+ 2yx 4 9 y 1 x 1 == =+ 1 7 y 4 x 03yx 1 1 1 3 4 5 x y x y = + = =+ =+ 36 5 y 1 x 1 4 3 y 6 x 5 = + = 1 1y 1 2x 1 1 1y 3 2x 2 = + + = + 3 yx 1 yx 1 1 yx 3 yx 2 Bài 11. Giải các hệ phơng trình : a. =++ = 05)yx(3)yx(2 05yx 2 b. =+ =+ 8)yx(3)yx(5 12y3x2 2 Bài 12. Cho hệ phơng trình : = =+ )1(bayx2 )2(1byax Trang: 12 [...]... ti hay khụng? Cỏc s dng a, b, c khỏc nhau tha món ng thc: ( ) +( 5 a b b c ) +( 5 c a ) 5 =0 Bi 4: 1 Cho a, b, c l cỏc s thc khụng õm Chng minh rng: a+ b+ c ab + ac + bc 2 Cho A, B Z Chng minh s 99 999 +11111 3 khụng th biu din di dng ( A + B 3 ) 2 3 Cho A = a a + ab , B = b b + ab ( a > 0, b > 0 ) Chng minh rng: Nu a + b v ab u l s hu t thỡ A+ B v AB cng l s hu t Bi 5: (1)Cho ba s dng x, y, z tha... minh cỏc bt ng thc sau 1 1 1 1 + + + 0 Bi 10) Tỡm GTLN ca 2 2 P = ( x 199 0) + ( x 199 1) Bi 11) Cho M = a + 3 4 a 1 + a + 15 8 a 1 a) Tỡm iu kin ca a M c xỏc nh b) Tỡm GTNN ca M v giỏ tr ca A tng ng Trang:36 Su tm Bi 12) Cho ba s dng x, y,... x1 = B x1 = - 3 3 ; x2 = 3 ; 3 x2 = 5 2 3x D f(x) = f(-x) x 3 = 0 Các nghiệm của phơng trình là: C x1 = - 3 D x1 = 3 3 ; 3 3 3 x2 = - ; x2 = - 3 3 c) Tam giác ABC ( A = 90 0 ) ; a = 29; b = 21 Độ dài c là: A c = 26 B c = 20 C c = 19 D c = 23 2 d) Một hình vuông có diện tích 16 cm Diện tích hình tròn nội tiếp trong hình vuông có diện tích là: A 4 cm2 B 16 cm2 C 8 cm2 D Kết quả khác Câu 2(2,5 điểm):... ax3 = by3 = cz3 v x + y + z = 1 thỡ 3 ax 2 + by 2 + cz 2 = 3 a + 3 b + 3 c Bi 10: Tỡm x, y Z tha món: a x + y = 197 5 b 3 x 5 y = 2000 Cỏc bi tp trờn ch cú tớnh minh ha, cỏc bn cú th tỡm c li gii ca cỏc bi tp ny t cỏc cun sỏch: Toỏn nõng cao v cỏc chuyờn i + Hỡnh 9, 400 Bi tp toỏn 9, hoc cỏc thi hc sinh gii ca thnh ph Ch 2: CC TR Bi1) Cho hai s thc x, y tha món iu kin: x2 + y2 = 1.Tỡm GTLN v... 4: Nhận định kết quả, thử lại và trả lời Bài tập vận dụng: Bài 1 Tìm hai số biết tổng cuả hai số bằng 59, hai lần của số này hn ba lần của số kia là 8 Bài 2 Cho một số có hai chữ số, nếu đổi chỗ hai ch số của nó thì đợc một số lớn hơn số đã cho là 63 Tổng của số đã cho và số mới tạo thành bằng 99 Tìm số đã cho? Bài 3 Phân tích số 270 ra thừa số mà tổng của chúng bằng 33 Bài 4 một sân trờng hình chữ... x2 là hai nghiệm của phơng trình x 4 x Trang: 19 1 5 1 = 0 CMR: x14 + x2 4 2 + 2 2a 2 Su tm III.Phơng pháp sử dụng giả thiết hoặc một BĐT đã biết a+b ab a, b 0 2 2 - Sử dụng BĐT Bunhiacôpsci: ( ax + by ) a 2 + b 2 - Sử dụng BĐT Côsy: ( - Các hệ quả của BĐT Côsy: )(x 2 ) + y 2 x, y 1 x 1 4 x, y > 0 y x+ y 1 4 x, y +) xy ( x + y ) 2 +) + +) 1 1 1 9 + + x, y, z x y z x+ y+z Ví dụ: Cho 3 cạnh của... 0 C x 0 & x 1 D x . tính giá trị của các biểu thức sau: a, 2 a4a129a9 ++ với a = -9 ; b, 1 + 4m4m 2m m3 2 + với m<2 c, a4a25a101 2 + với a= 2 ; d, 4x- 1x6x9 2 ++ với x=- 3 e, 6x 2 -x 6 +1 với x = 2 3 3 2 + Bi. căn thức sau: Bài 1. Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp: a, 9 196 49 16 81 25 b, 81 34 2. 25 14 2. 16 1 3 c. 567 3,34.640 d, 22 511.8106,21 Bài 2. Phân tích. =0 12 12 : 1 1 . 1 1 1 2 2 3 ++ + + ++ + = xx x x xx x x x D Tính giá trị của D biết x= 2007 2005 ( ) 9 961 2 2 ++ = x xxx E Tính E biết 16=x 4 4ã2 2 2 = xx xa F Tính F biết x= a a + 1 . Đáp án: 1