1. Trang chủ
  2. » Giáo án - Bài giảng

cac de thi vao 10 cua tinh thai binh tu nam 1998-2006

12 1K 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 311 KB

Nội dung

Gọi E, F thứ tự là hình chiếu của B, C lên đờng kính AD của đờng tròn O và M, N thứ tự là trung điểm của BC, AB.. Chứng minh: a Bốn điểm A,B,H,E cùng nằm trên đờng tròn tâm N và HE// CD.

Trang 1

Bài 1(1 điểm):

Phân tích ra thừa số : a) a3+1 ; b) 8  5 2   10

Bài 2(3 điểm):

Trong hệ trục toạ độ Oxy cho ba điểm A(  3;6); B(1;0); C(2;8)

a) Biết điểm A nằm trên Parabol (P) có phơng trình y = ax2, xác định a ?

b) Lập phơng trình đờng thẳng (d) đi qua hai điểm B và C

c) Xét vị trí tơng đối giữa đờng thẳng (d) và Parabol (P)

Bài 3(2 điểm):

Giải phơng trình: 2 7

5

x

x  x

Bài 4(1,5 điểm):

ABC có AB = AC = 5cm; BC = 6cm Tính :

a) Đờng cao ABC hạ từ đỉnh A ?

b) Độ dài đờng tròn nội tiếp ABC ?

Bài 5(2 điểm):

Cho hình vuông ABCD Trên cạnh BC, CD lần lợt lấy điểm E, F sao cho EAF  45 0 Biết

BD cắt AE, AF theo thứ tự tại G, H Chứng minh:

a) ADFG, GHFE là các tứ giác nội tiếp

b) CGH và tứ giác GHFE có diện tích bằng nhau

Bài 6(0,5 điểm)

Tính thể tích của hình hộp chữ nhật ABCDA/B/C/D/ Biết AB/ = 5; AC = 34; AD/ = 41

Bài 1(2 điểm):

So sánh x; y trong mỗi trờng hợp sau:

a) x  27  2 và y  3 ; b) x  5 6 và y  6 5 ; c) x = 2m và y = m+2

Bài 2(2 điểm):

a) Trên cùng hệ trục toạ độ vẽ đồ thị các hàm số 2

2

x

y  (P) và y = x +3

2 (d)

b) Dùng đồ thị cho biết (có giải thích) nghiệm của phơng trình : 2x  3 x

Bài 3(3 điểm):

Xét hai phơng trình: x2+x+k+1 = 0 (1) và x2- (k+2)x+2k+4 = 0 (2)

a) Giải phơng trình (1) với k = - 1; k = - 4

b) Tìm k để phơng trình (2) có một nghiệm bằng 2 ?

c) Với giá trị nào của k thì hai phơng trình trên tơng đơng ?

Bài 4(0,5 điểm):

Tam giác vuông ABC có Aˆ 90 ;0 Bˆ 30 ;0 BC = d ; quay một vòng chung quanh AC Tính thể tích hình nón tạo thành

Bài 5(2,5 điểm):

Cho ABC không cân, đờng cao AH, nội tiếp trong đờng tròn tâm O Gọi E, F thứ tự là hình chiếu của B, C lên đờng kính AD của đờng tròn (O) và M, N thứ tự là trung điểm của BC,

AB Chứng minh:

a) Bốn điểm A,B,H,E cùng nằm trên đờng tròn tâm N và HE// CD

1

đề thi tuyển sinh LớP 10 thpt

Năm học 1998-1999

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi :

đề thi tuyển sinh LớP 10 thpt

Năm học 1997-1998

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi :

Trang 2

b) M là tâm đờng tròn ngoại tiếp HEF.

Bài 1(2 điểm):

Với giá trị nào của x thì các biểu thức sau có nghĩa:

1) 1

;

2x 2) 2

5 1

; 2

x

x x

 3) 1

;

x x

 4) 1

;

1 x

Bài 2(1 điểm):

Giải phơng trình: 3 1

2

1 3

x x

Bài 3(1,5 điểm):

Cho hệ phơng trình 2

2 ( 1) 6

x my

 

  

1) Giải hệ với m = 1

2) Tìm giá trị của m để hệ có nghiệm

Bài 4(2 điểm):

Cho hàm số y = 2x2 (P)

1 Vẽ đồ thị hàm số (P)

2 Viết phơng trình đờng thẳng đi qua điểm (0;-2) và tiếp xúc với (P)

Bài 5(3,5 điểm):

Cho nửa đờng tròn đờng kính AB Gọi H là điểm chính giữa cung AB, gọi M là một điểm nằm trên cung AH; N là một điểm nằm trên dây cung BM sao cho BN = AM Chứng minh:

1 AMH = BNH

2 MHN là tam giác vuông cân

3 Khi M chuyển động trên cung AH thì đờng vuông góc với BM kẻ từ N luôn đi qua một

điểm cố định ở trên tiếp tuyến của nửa đờng tròn tại điểm B

Bài 1(2 điểm):

Cho biểu thức

2 2

(2 3)( 1) 4(2 3) ( 1) ( 3)

A

 

a) Rút gọn A

b) Tìm x để A = 3

Bài 2(2 điểm):

Cho phơng trình x2-2(m+1)x+m2-5 = 0

a) Giải khi m = 1

b) Tìm m để phơng trình có nghiệm

Bài 3(3 điểm):

Cho (O) đờng kính AC Trên đoạn OC lấy điểm B và vẽ đờng tròn (O/) đờng kính BC Gọi M là trung điểm đoạn AB Từ m kẻ dây cung DEAB Gọi I là giao của DC với (O/)

a) Chứng minh ADBE là hình thoi

b) BI// AD

đề thi tuyển sinh LớP 10 thpt

Năm học 1999-2000

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi :

(Đề thi bị lộ phải thi lại)

đề thi tuyển sinh LớP 10 thpt

Năm học 1999-2000

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi :

(Đề thi thay thế đề bị lộ)

Trang 3

c) I,B,E thẳng hàng

Bài 4(3 điểm):

Cho hai hàm số 4

2

mx

y   (1) và 4

1

x y

m



 (2) (m  1) a) Vẽ đồ thị hàm số (1) và (2) trên cùng một hệ trục toạ độ Oxy với m = -1

b) Vẽ đồ thị hàm số (1) và (2) trên cùng một hệ trục toạ độ Oxy ở trên với m = 2

c) Tìm toạ độ giao điểm của các đồ thị hàm số (1) và (2)

Bài 1(2 điểm):

So sánh hai số x và y trong mỗi trờng hợp sau:

a) x = 50  32 và y= 2; b) x  6 7 và y  7 6 ; c) x = 2000a và y = 2000+a

Bài 2(2 điểm):

Cho

3

A

a) Rút gọn rồi tính số trị của A khi x = 53

9 2 7 

b) Tìm x để A > 0

Bài 3(2 điểm):

a) Giải hệ phơng trình:

2

2( ) 5( ) 7 0

5 0

x y

     

  

b) Giải và biện luận: mx2+2(m+1)x+4 = 0

Bài 4(3 điểm):

Trên đờng thẳng d lấy ba điểm A,B,C theo thứ tự đó Trên nửa mặt phẳng bờ d kẻ hai tia

Ax, By cùng vuông góc với d Trên tia Ax lấy I Tia vuông góc với CI tại C cắt By tại K Đ-ờng tròn đĐ-ờng kính IC cắt IK tại P

1) Chứng minh tứ giác CBPK nội tiếp đợc đờng tròn

2) Chứng minh AI.BK = AC.CB

3) Giả sử A,B,I cố định hãy xác định vị trí điểm C sao cho diện tích ABKI max

Bài 5(1 điểm):

Cho P(x) = 3x3+ax2+b Tìm giá trị của a và b để P(2000) = P(-2000) = 0

Bài 1(2 điểm):

Cho biểu thức

2 2

.

x K

  

   

a) Tìm điều kiện của x để biểu thức K xác định

b) Rút gọn biểu thức K và tìm giá trị của x để K đạt giá trị lớn nhất

Bài 2(2 điểm):

Cho phơng trình bậc hai: 2x2+(2m-1)x+m-1 = 0(1)

a) Giải phơng trình (1) khi cho biết m =1; m = 2

b) Chứng minh rằng phơng trình (1) không thể có hai nghiệm dơng với mọi giá trị của m

Bài 3(2 điểm):

3

đề thi tuyển sinh LớP 10 thpt

Năm học 2001-2002

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi :

đề thi tuyển sinh LớP 10 thpt

Năm học 2000-2001

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi :

Trang 4

a) Giải hệ phơng trình : 2 1

 

 

b) Chứng minh rằng 2000 2 2001   2002  0

Bài 4(4 điểm):

Từ một điểm S ở ngoài đờng tròn (O) vẽ hai tiếp tuyến SA, SB và cát tuyến SCD của đờng tròn đó

a) Gọi E là trung điểm của dây CD Chứng minh 5 điểm S,A,E,O,B cùng thuộc một đờng tròn

b) Nếu SA = AO thì SAOB là hình gì? tại sao?

2

AB CD

Bài 1(2 điểm):

Cho biểu thức

2 2

.

K

a) Tìm điều kiện đối với x để K xác định

b) Rút gọn K

c) Với những giá trị nguyên nào của x thì biểu thức K có giá trị nguyên?

Bài 2(2 điểm):

Cho hàm số y = x+m (D) Tìm các giá trị của m để đờng thẳng (D) :

a) Đi qua điểm A(1;2003)

b) Song song với đờng thẳng x-y+3 = 0

c) Tiếp xúc với đờng thẳng 1 2

4

yx

Bài 3(3 điểm):

a) Giải bài toán bằng cách lập phơng trình:

Một hình chữ nhật có đờng chéo bằng 13m và chiều dài lớn hơn chiều rộng 7m Tính diện tích hình chữ nhật đó

b) Chứng minh Bất đẳng thức: 2002 2003

2002 2003

2003  2002  

Bài 4(3 điểm):

Cho ABC vuông ở A Nửa đờng tròn đờng kính AB cắt BC tại D Trên cung AD lấy một

điểm E Nối BE và kéo dài cắt AC tại F

a) Chứng minh: CDEF là một tứ giác nội tiếp.

b) Kéo dài DE cắt AC ở K Tia phân giác của góc CKD cắt EF và CD tại M và N Tia phân

giác của góc CBF cắt DE và CF tại P và Q Tứ giác MNPQ là hình gì? Tịa sao?

c) Gọi r, r1, r2 là theo thứ tự là bán kính của đờng tròn nội tiếp các tam giác ABC, ADB, ADC Chứng minh rằng rr12 r22

đề thi tuyển sinh LớP 10 thpt

Năm học 2002-2003

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi :

đề thi tuyển sinh LớP 10 thpt

Năm học 2003-2004

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi :

Trang 5

Bài 1(2 điểm): Cho biểu thức

3

M

1 Với giá trị nào cỉu x thì biểu thức có nghĩa

2 Rút gọn biểu thức

3 Tìm x để biểu thức có giá trị lớn nhất

Bài 2(2,5 điểm):

Cho hàm số y = 2x2 (P) và y = 2(a-2)x - 1

2a

2 (d)

1 Tìm a để (d) đi qua điểm A(0;-8)

2 Khi a thay đổi hãy xét số giao điểm của (P) và (d) tuỳ theo giá trị của a

3 Tìm trên (P) những điểm có khoảng cách đến gốc toạ độ O(0;0) bằng 3

Bài 3(2 điểm):

Một tấm tôn hình chữ nhật có chu vi là 48cm Ngời ta cắt bỏ 4 hình vuông có cạnh là 2cm

ở 4 góc rồi gấp lên thành một hình hộp chữ nhật(không có nắp) Tính kích thớc của tấm tôn đó, biết rằng thể tích hình hộp bằng 96cm3

Bài 4(3 điểm):

Cho ABC có ba góc nhọn nội tiếp trong đờng tròn tâm O, bán kính R Hạ các đờng cao

AD, BE của tam giác Các tia AD, BE lần lợt cắt (O) tại các điểm thứ hai là M, N Chứng minh rằng:

1 Bốn điểm A,E,D,B nằm trên một đờng tròn Tìm tâm I của đờng tròn đó

2 MN// DE

3 Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB Chứng minh rằng độ dài bán kính đờng tròn ngoại tiếp CDE không đổi

Bài 5(0,5 điểm):

Tìm các cặp số (x;y) thoả mãn: (x2+1)( x2+ y2) = 4x2y

Câu 1: (2,0điểm) Cho biêủ thức A =

a

a a

a a a

a a

4

2 2

4 2

8

) 1 2 (

1) Rút gọn A

2) Tìm a để A nhận giá trị nguyên

Câu2: (2,0điểm) Cho hệ phơng trình : 

a y x

a y

x

2

3 3 2

1) Tìm a biết y=1

2) Tìm a để : x2+y2 =17

Câu3: (2,0điểm)

Trên mặt phẳng toạ độ Oxy cho Parabol (P) có phơng trình : y = 2x2 , một đờng thẳng (d) có

hệ số góc bằng m và đi qua điểm I(0;2)

1) Viết phơng trình đờng thẳng (d)

2) CMR (d) luôn cắt (P) tại hai điểm phân biệt A và B

3) Gọi hoành độ giao điểm của A và B là x1, x2 CMR : x 1 - x 2  2

Câu4: (3,5điểm)

Cho nửa đờng tròn tâm O đờng kính AB Lấy D trên cung AB (D khác A,B), lấy điểm C nằm giữa O và B Trên nửa mặt phẳng bờ AB có chứa D kẻ các tia Ax và By vuông góc với

AB Đờng thẳng qua D vuông góc với DC cắt Ax và By lần lợt tại E và F

1) CMR : Góc DFC bằng góc DBC

2) CMR : ECF vuông

3) Giả sử EC cắt AD tại M, BD cắt CF tại N CMR : MN//AB

4)CMR: Đờng tròn ngoại tiếp EMD và đờng tròn ngoại tiếp DNF tiếp xúc nhau tại D

Câu5: (0,5điểm) Tìm x, y thoả mãn : 4xy2  y 2  4x2y

5

đề thi tuyển sinh LớP 10 thpt

Năm học 2004-2005

Thời gian : 150 phút

Sở gd-đt thái bình

*******

Ngày thi : 24/07/2004

đề thi tuyển sinh LớP 10 thpt

Năm học 2005-2006

Thời gian : 150 phút

Trang 6

Bài 1: (2,0 điểm)

1 Thực hiện phép tính: 5  9 4 5 

2 Giải phơng trình: x4+5x2-36 = 0

Bài 2 (2,5 điểm)

Cho hàm số: y = (2m-3)x +n-4 (d) ( 3

2

m  )

1 Tìm các giá trị của m và n để đờng thẳng (d) :

a) Đi qua A(1;2) ; B(3;4)

b) Cắt trục tung tại điểm có tung độ y 3 2 1  và cắt trục hoành tại điểm có hoành

độ x  1 2

2 Cho n = 0, tìm m để đờng thẳng (d ) cắt đờng thẳng (d/) có phơng trình x-y+2 = 0

tại điểm M (x;y) sao cho biểu thức P = y2-2x2 đạt giá trị lớn nhất

Bài 3: (1,5 điểm)

Một mảnh vờn hình chữ nhật có diện tích là 720 m2, nếu tăng chiều dài thêm 6m và giảm chiều rộng đi 4m thì diện tích mảnh vờn không đổi Tính các kích thớc của mảnh vờn

Bài 4: (3,5 điểm)

Cho nửa đờng tròn (O) đờng kính AB = 2R Trên nửa mặt phẳng bờ AB chứa nửa đòng tròn

kẻ hai tia tiếp tuyến Ax và By Qua điểm M thuộc nửa đờng tròn(M khác A và B) kẻ tiếp tuyến thứ ba cắt Ax và By ở C, D

1 Chứng minh: a) CD = AC+BD b) AC.BD = R2

2 Xác định vị trí điểm M để tứ giác ABDC có diện tích nhỏ nhất

3 Cho R = 2cm, diện tích tứ giác ABDC bằng 32cm2 Tính diện tích ABM

Bài 5:(0,5 điểm)

Cho các số dơng x, y, z thoả mãn x+y+z =1 Chứng minh rằng:

2x2 xy 2y2  2y2 yz  2z2  2z2 zx 2x2  5

Bài 1: (2,0 điểm) Cho biểu thức: 2 10 2 1

Q

    Với x  0 và x  1 1) Rút gọn biểu thức Q

2) Tìm giá trị của x để 1

3

Q 

Bài 2: (2,5 điểm) Cho hệ phơng trình:

1

x my

 

 

 (m là tham số) 1) Giải hệ với m = -2

2) Tìm các giá trị của m để hệ có nghiệm duy nhất (x;y) thoả mãn y = x2

Bài 3: (1,5 điểm) Trong hệ toạ độ Oxy, cho đờng thẳng (d): y = x + 2 và Parabol (P): y = x2 1) Xác định toạ độ hai giao điểm A và B của (d) với (P)

2) Cho điểm M thuộc (P) có hoành độ là m (với –1  m  2) CMR: SMAB  28

8

Bài 4: (3,5 điểm) Cho đờng tròn tâm O, đờng kính AB = 2R Gọi I là trung điểm của AO Qua

I kẻ dây CD vuông góc với AB

1) Chứng minh: a) Tứ giác ACOD là hình thoi b)  1 

2

CBDCAD

Sở gd-đt thái bình

*******

Ngày thi :

đề thi tuyển sinh thpt

Năm học 2006-2007

Thời gian : 120 phút

Sở gd-đt tháI bình

*******

Ngày thi 18 /07/2006:

Trang 7

2) Chứng minh rằng O là trực tâm của BCD

3) Xác định vị trí điểm M trên cung nhỏ BC để tổng (MB+MC+MD) đạt giá trị lớn nhất

Bài 5: (0,5 điểm) Giải bất phơng trình: x 1  3  x 4x 2xx3  10

Bài 1: (2,5 điểm)

: 1

P

a

3) Rút gọn biểu thức P

4) Tìm a để 1 1

1 8

a P

Bài 2: (2,5 điểm)

Một ca nô xuôi dòng trên một khúc sông từ bến A đến bến B dài 80 km, sau đó lại ngợc dòng đến địa điểm C cách bến B 72 km Thời gian ca nô xuôi dòng ít hơn thời gian ngợc dòng là 15 phút Tính vận tốc riêng của ca nô biết vận tốc của dòng nớc là 4 km/h

Bài 3: (1 điểm)

Tìm toạ độ giao điểm A và B của đồ thị hai hàm số y = 2x+3 và y = x2

Gọi D và C lần lợt là hình chiếu vuông góc của A và B trên trục hoành Tính SABCD

Bài 4: (3 điểm)

Cho (O) đờng kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MM

a) CMR: BCHK là tứ giác nội tiếp

b) Tính AH.AK theo R

c) Xác định vị trí của điểm K để (KM+KN+KB) đạt giá trị lớn nhất và tính giá trị lớn nhất

đó

Bài 5: (1 điểm)

Cho hai số dơng x, y thoả mãn điều kiện: x+y = 2 Chứng minh: x2y2(x2+ y2)  2

Đề số: 01

Bài 1(2 điểm):

Cho 2 9 3 2 1

P

a) Rút gọn P

b) Tìm x để P < 1

c) Tìm các giá trị nguyên của x để P có giá trị nguyên

Bài 2(2 điểm):

Cho hệ phơng trình ( 1) 3 1

x y m

   

  

a) Giải hệ phơng trình với m = 2

b) Tìm m để hệ có nghiệm duy nhất (x;y) mà S = x2+y2 đạt giá trị nhỏ nhất

Bài 3(2 điểm):

Cho y = ax2 (P) và y = -x+m (D)

a) Tìm a biết (P) luôn đi qua A(2;-1)

b) Tìm m biết (D) tiếp xúc với (P) Tìm toạ độ tiếp điểm

c) Gọi B là giao của (D) với trục tung; C là điểm đối xứng của A qua trục tung

CMR: C nằm trên (P) và ABC vuông cân

Bài 4(3,5 điểm):

7

đề thi tuyển sinh thpt

Năm học 2006-2007

Thời gian : 120 phút

Sở gd-đt hà nội

*******

Ngày thi / 7/2006:

Trang 8

Cho nửa đờng tròn tâm O đờng kính AB bằng 2R M là một điểm tuỳ ý trên nửa đờng tròn (M khác A và B) Kẻ hai tiếp tuyến Ax và By với nửa đờng tròn Qua M kẻ tiếp tuyến thứ

ba cắt hai tiếp tuyến Ax và By tại C và D

a) Chứng minh rằng: COD vuông

b) Chứng minh rằng: AC.BD = R2

c) Gọi E là giao của OC và AM; F là giao của OD và BM Chứng minh rằng: EF = R

d) Tìm vị trí M để SABCD đạt giá trị bé nhất

Bài 5(0,5 điểm):

Cho x > y và x.y = 1 Tìm giá trị nhỏ nhất của

2 2

A

x y

Đề số: 02

Bài 1(2 điểm):

Cho a b a b

N

d) Rút gọn N

e) Tính N khi a 4 2 3 ;  b 4 2 3 

f) CMR: Nếu 1

5

a a

b b

 thì N có giá trị không đổi

Bài 2(2 điểm):

Cho (d1): x+y=k ; (d2): kx+y=1 ; y = -2x2 (P)

a) Tìm giao điểm của (d1) và (d2) với k = 2003

b) Tìm k để (d1) cắt (P) tại hai điểm phân biệt và (d2) cũng cắt (P) tại hai điểm phân biệt c) Tìm k để (d1) và (d2) cắt nhau tại một điểm nằm trên (P)

Bài 3(2 điểm):

Một tam giác có cạnh lớn nhất là 29, còn hai cạnh kia là nghiệm của phơng trình

7x-x2-m = 0 Tìm m để tam giác là tam giác vuông và khi đó hãy tính diện tích tam giác

Bài 4(3,5 điểm):

Cho M là một điểm tuỳ ý trên nửa đờng tròn tâm O, đờng kính AB = 2R(M không trùng với

A và B) Vẽ các tiếp tuyến Ax, By, Mz của nửa đờng tròn đó Đờng Mz cắt Ax và By tại N

và P Đờng thẳng AM cắt By tại C và đờng thẳng BM cắt cắt Ax tại D CMR:

a) Tứ giác AOMN nội tiếp và NP = AN+BP

b) N, P là trung điểm của AD và BC

c) AD.BC = 4 R2

d) Xác định vị trí điểm M để SABCD có giá trị nhỏ nhất

Bài 5(0,5 điểm):

Tìm (x;y) thoả mãn phơng trình: 5x 2 x(2  y)  y2   1 0

Đề số: 03

Bài 1(2,0 điểm):

K

a) Rút gọn K

b) CMR: Nếu 81

81

y K y

 thì y

x là số nguyên chia hết cho 3

c) Tìm số nguyên x để K là số nguyên lớn hơn 5

Bài 2(2,0 điểm):

Cho x2-2(m+1)x+m-4 = 0 (1)

a) Tìm m để (1) có đúng một nghiệm bằng 2? tìm nghiệm còn lại

b) CMR: (1) luôn có hai nghiệm phân biệt

c) CMR: A = x1(1-x2)+ x2(1-x1) không phụ thuộc vào m

Trang 9

Bài 3(2,0 điểm)

Cho y = ax2 (P)

a) Tìm a biết (P) đi qua điểm A(1; 1

2)

b) Trên (P) lấy M, N có hoành độ lần lợt là 2 và 1 Viết phơng trình MN

c) Xác định hàm số y = ax+b (D) biết (D) song song với MN và tiếp xúc với (P)

Bài 4(3,5 điểm)

Cho (O;R) có hai đờng kính AB, CD vuông góc với nhau E là một điểm bất kỳ trên cung nhỏ BD (E khác B và D) EC cắt AB ở M, EA cắt CD ở N

a) Hai AMC và ANC có quan hệ với nhau nh thế nào? Tại sao?

b) CMR: AM.CN = 2R2

c) Giả sử AM = 3BM Tính tỉ số CN

DN

Bài 5(0,5 điểm)

Cho a,b c là ba cạnh của ABC và a3+b3+c3-3abc = 0 Hỏi ABC có đặc điểm gì?

Đề số: 04

Bài 1(2,0 điểm):

K

        

a) Rút gọn K

b) Tính giá trị của K khi x  4 2 3

c) Tìm giá trị của x để K >1

Bài 2(2,0 điểm):

Cho phơng trình (m+1)x2-2(m-1)x+m-3 = 0 (1)

a) Tìm m để (1) có hai nghiệm phân biệt

b) Tìm m để phơng trình có ít nhất một nghiệm âm

c) Tìm m để (1) có hai nghiệm cùng dấu thoả mãn nghiệm này gấp đôi nghiệm kia

Bài 3(2,0 điểm)

Một mảnh vờn hình chữ nhật có chu vi 280 m Ngời ta làm một lối đi xung quanh (thuộc đất trong vờn) rộng 2 m Tính kích thớc của vờn, biết rằng đất còn lại trong vờn để trồng trọt là

4256 m2

Bài 4(3,5 điểm)

Cho (O;R) và dây cung CD cố định có trung điểm là H Trên tia đối của tia DC lấy điểm S

và qua S kẻ các tiếp tuyến SA, SB với (O) Đờng thẳng AB cắt các đờng SO; OH lần lợt tại

E, F.Chứng minh rằng:

a) SEHF là tứ giác nội tiếp

b) OE.OF = R2

c) OH.OF = OE.OS

d) AB luôn đi qua một điểm cố định khi S chạy trên tia đối của tia DC

Bài 5(0,5 điểm)

Cho hai số dơng x, y thoả mãn điều kiện: x+y = 1 Chứng minh: 4 4 1

8(x y ) 5

xy

  

Đề số: 05

Bài 1(2,0 điểm):

9

P

x

      

       

a) Rút gọn P

b) Tìm x để P < -1/2

c) Tìm giá trị nhỏ nhất của P

Bài 2(2,0 điểm):

9

Trang 10

Cho phơng trình : mx2+2(m-2)x+m-3 = 0 (1)

a) Tìm m để (1) có hai nghiệm trái dấu

b) Xác định m để (1) có hai nghiệm trái dấu sao cho nghiệm âm có giá trị tuyệt đối lớn hơn c) Gọi x1 , x2 là nghiệm của phơng trình Viết hệ thức liên hệ giữa các nghiệm không phụ thuộc m

d) Tìm giá trị nhỏ nhất của biểu thức x12x22

Bài 3(2,0 điểm):

Cho y = 1

2x

2 (P) và mx+y = 2 (d) a) Chứng minh rằng khi m thay đổi thì (d) luôn đi qua một điểm cố định C

b) Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A và B

c) Xác định m để AB ngắn nhất Khi đó hãy tính diện tích AOB

d) Tìm quỹ tích trung điểm I của AB khi m thay đổi

Bài 4(3,0 điểm):

Cho (O;R) có hai đờng kính AB và CD vuông góc với nhau M là điểm bất kỳ thuộc đờng kính AB (M khác O,A,B) CM cắt (O) tại N (N khác C) Dựng đờng thẳng d vuông góc với

AM tại M Tiếp tuyến với (O) tại N cắt d ở E

a) CMR: OMEN nội tiếp

b) OCME là hình gì? tại sao?

c) CMR: CM.CN không đổi

d) CMR: E chạy trên đờng thẳng cố định khi m chuyển động trên đờng kính AB (M khác A,B)

Bài 5(1,0 điểm): Giải hệ 2 1 2 2

2005 2 2006 1003

+Đề thi năm 1997-1998

Bài 5:

a) Góc A1 = B1

b) Tử ý a) ta có Góc G = D = 900

Tơng tự tứ giác AHEB nội tiếp ta có góc H = B = 900

.

AGH AEE

( Do HKE vuông cân tại K nên EHHK 2

Do AGF vuông cân tại G nên AFAG 2 )

 S.GHEF = S.AGH = S.CGH (c.c.c)

+Đề thi năm 1998-1999

Chứng minh cho MN là trung trực của HE

+Đề thi năm 2001-2002

10

1 1

G

H A

B

D

C E

F K

Q O

A

D

E

F M

P H

N

1 1

1

2

2

C

O S

D E

A

Ngày đăng: 10/07/2014, 08:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w