Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
764,36 KB
Nội dung
Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè Thø 2, ngµy 28 / 10 / 2008 CHỦ ĐỀ TỰ CHỌN BÁM SÁT THEO CHƯƠNG TRÌNH NÂNG CAO Chủ đề TC 1 MỘT SỐ BÀI TỐN VỀ ĐỒ THỊ HÀM SỐ ( 6 TIẾT) A.PHƯƠNG TRÌNH TIẾP TUYẾN 1) Cho đồ thò ( ) ( ) 3 2 1 : 1 3 C y f x x x x= = − − + . Hãy viết phương trình tiếp tuyến của (C ) tại điểm uốn của ( C). 2) Hãy viết phương trình tiếp tuyến của đồ thò hàm số 3 2 3 2y x x= − + tại các giao đểm của nó với trục hoành. 3) Hãy viết phương trình tiếp tuyến của đồ thò ( C) : 4 2 1 9 2 4 4 y x x= − + + tại điểm M thuộc ( C) có hoành độ bằng 1. 4) Hãy viết phương trình tiếp tuyến của đồ thò hàm số 2 1 x y x + = − tại giao điểm của đồ thò với trục tung. 5) Viết phương trình tiếp tuyến của đồ thò hàm số 2 3 1 x y x + = + , biết tiếp tuyến song song với đường thẳng y x= − . 6) Viết phương trình tiếp tuyến của đồ thò hàm số 2 1 1 x x y x − − = + , biết tiếp tuyến song song với đường thẳng y x= − . 7) Viết phương trình tiếp tuyến của đồ thò hàm số 3 2 3y x x= − , biết tiếp tuyến vuông góc với đường thẳng 3 x y = . 8) Viết phương trình các tiếp tuyến của đồ thò hàm số 3 3 2y x x= − + , biết tiếp tuyến vuông góc với đường thẳng 1 9 y x= − . 9) Tìm trên đồ thò của hàm số 3 1 2 3 3 y x x= − + các điểm mà tại đó tiếp tuyến của đồ thò vuông góc với đường thẳng 1 2 3 3 y x= − + . 10) Tìm trên đồ thò 2 2 2 1 x x y x + + = + các điểm sao cho tiếp tuyến tại đó vuông góc với tiệm cận xiên. Thø 2, ngµy 28 / 10 / 2008 Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 1 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè SỰ TƯƠNG GIAO CỦA HAI ĐỒ THỊ HÀM SỐ Cho đồ thò ( ) ( ) 1 :C y f x= và ( ) ( ) 2 :C y g x= . Ta có : - Toạ độ giao điểm của ( ) 1 C và ( ) 2 C là nghiệm của hệ phương trình ( ) ( ) y f x y g x = = - Hoành độ giao điểm của ( ) 1 C và ( ) 2 C là nghiệm của phương trình : ( ) ( ) f x g x= (1) - Số nghiệm của phương trình (1) bằng số giao điểm của ( ) 1 C và ( ) 2 C . 1) Tìm tham số m để ( ) :d y x m= − + cắt đồ thò ( ) 2 1 : 1 x x C y x + − = − tại hai điểm phân biệt. 2) Tìm tham số m để ( ) : 2 2d y mx m= + − cắt đồ thò ( ) 2 2 4 : 2 x x C y x − + = − tại hai điểm phân biệt. 3) Biện luận số giao điểm của đồ thò ( ) 2 6 3 : 2 x x C y x − + = + và đường thẳng ( ) :d y x m= − TOÁN ÔN TẬP KHẢO SÁT HÀM I. Hàm số bậc ba y = ax 3 + bx 2 + cx + d ( a ≠ 0) 1.a. Khảo sát hàm số y = f(x) = – x 3 + 3x 2 + 9x + 2 (1) b. CMR đồ thò của hàm số (1) có tâm đối xứng . 2.a. Khảo sát hàm số y = x 3 + 3x 2 + 1 (1) b. Từ gốc toạ độ có thể kẻ được bao nhiêu tiếp tuyến của đồ thò (1) . Viết phương trình các tiếp tuyến đó . c. Dựa vào đồ thò (1) , biện luận số nghiệm của phương trình sau theo m : x 3 + 3x 2 + m = 0 3.a. Khảo sát hàm số y = x 3 – 3x 2 + 2 (C) b. Viết phương trình tiếp tuyến tại điềm uốn của (C) . c. Viết phương trình tiếp tuyến của (C) qua điểm (0 ; 3). 4. Cho hàm số y = x 3 – 3mx 2 + 3(2m – 1)x + 1 đồ thò là (C m ) a. Khảo sát hàm số y = x 3 – 3x 2 + 3x + 1 Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 2 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè b. Xác đònh m sao cho hàm số đồng biến trên tập xác đònh của hàm số . c. Xác đònh m sao cho hàm số có một cực đại và một cực tiểu . I. Hàm số trùng phương y = ax 4 + bx 2 + c ( a ≠ 0) 5.a. Khảo sát hàm số y = 2 1 x 4 – 3x 2 + 2 3 b. Viết phương trình tiếp tuyến của đồ thò (C) của hàm số tại các điểm uốn . c. Tìm các tiếp tuyến của (C) đi qua điểm A(0 ; 2 3 ) . 6. Cho hàm số y = –x 4 + 2mx 2 – 2m + 1 (C m ) a. Biện luận theo m số cực trò của hàm số . b. Khảo sát hàm số y = –x 4 + 10x 2 – 9 . c. Xác đònh m sao cho (C m ) cắt trục hoành tại bốn điểm phân biệt. II. Hàm số phân thức y = dcx bax = + c ≠ 0 ; ad – bc ≠ 0 7.a. Khảo sát hàm số y = 2 23 + + x x b. Dựa vào đồ thò (C) , vẽ các đường sau : y = 2 |23| + + x x , | y | = 2 23 + + x x . 8.a. Khảo sát hàm số y = 1 3 + + x x b. Gọi (C) là đồ thò hàm số đã cho .CMR đường thẳng y = 2x + m luôn luôn cắt (C) taiï hai điểm phân biệt M và N . c. Xác đònh m sao cho độ dài MN nhỏ nhất . IV. Hàm số phân thức y = '' 2 bxa cbxax + ++ aa’ ≠ 0 9. a. Khảo sát hàm số y = x – 1 1 +x b. Gọi (C) là đồ thò hàm số đã cho. Tìm các toạ độ của tâm đối xứng của đồ thò (C) . c. Xác đònh m để đt: y = m cắt (C) tại hai điểm A và B sao cho OA vuông góc OB . 10.a. Khảo sát hàm số y = 1 3 2 − − x xx b. CMR : đt y = – x + m (d) luôn luôn cắt (C) tại hai điểm phân biệt M và N . m sao cho hàm số có hai cực trò và tiệm cận xiên của (C m ) qua gốc tọa độ. 12. Cho hàm số y = 2 42 2 + −−+ x mmxx (C m ) Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 3 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè a. Xác đònh m để hàm số có hai cực trò . b. Khảo sát hàm số đã cho khi m = – 1 CHỦ ĐỀ TC 2 HÀM SỐ MŨ VÀ HÀM SỐ LƠGARIT ( 6 TIẾT ) ( ) 4 1 2 3 3 3 0,75 5 2 1 3 1 4 4 4 1 1/ / : 0,25 . / : , 0 . 16 a a a a Ti nh b Ru t gon A a a a a − − − − + ÷ ′ ′ + = > ÷ + ÷ & 2 5 3 2 1 1 2 / : 3 3 CMR < ÷ ÷ . 1 27 5 5 2 4 log 2 3 5 5 5 5 3 8 6 5 5 4 ˆ ` . . 3/ : /3 ; / log 6.log 9.log 2; / log ; / log log ( 5 ) a nla n a a a Ti nh a b c d a ′ ÷ ÷ ÷ ÷ 4/ Biểu diễn log 30 8 qua log 30 5 và log 30 3. 5/ So sánh các số : a./ log 3 5 và log 7 4 ; b/ log 0,3 2 và log 5 3 . 6/ Tính đạo hàm các hàm số sau: Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 4 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè 2 2 / 2 3sin 2 ; / 5 ln 8 . 1 / ; / ln 2 4 1 x x x x a y xe x b y x x sosx x e c y e d y e = + = − + = − = ÷ ÷ + 7/ Giải các pt sau: ( ) 2 2 2 1 1 1 ln 1 ln ln 2 2 2 2 2 sin cos 1 9 3 9 4 / 4 6 9 ; / 4 6 2.3 0; / 3 log log 8 1 0. / log 4 log 8; / 2 4.2 6; / log 27 log 3 log 243 0. 8 x x x x x x x x x x a b c x x x d x e f − − − + + + = − − = − + = + = + = − + = ÷ 8/Giải các pt sau: ( ) ( ) ( ) ( ) 2 3 3 7 4 2 3 9 4 2 2 2 7 11 / ; / 2.16 17.4 8 0; / log 2 log ; 11 7 / 9 5.3 6 0; / log 2 log 2 ; /log log 4 5; / 2 9.2 2 0; x x x x x x x x a b c x x d e x x f x x g − − + = − + = + = ÷ ÷ − + = + = + + = − + = CHỦ ĐỀ TC 3+4 NGUN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG ( 9 TIẾT ) PHƯƠNG PHÁP PHÂN TÍCH ĐỂ SỬ DỤNG NGUYÊN HÀM CƠ BẢN. B1: Biến đổi ( ) ( ) 1 n i i i f x A f x = = ∑ B2: ( ) ( ) ( ) 1 1 b b b n n i i i i i i a a a f x dx A f x dx A f x dx = = = = ∑ ∑ ∫ ∫ ∫ Chú ý: Tuỳ theo từng ( ) f x ta phân tích phù hợp để có các nguyên hàm cơ bản. 2 3 2 2 1 2 2 1x x x x − + + ∫ ; ( ) 2 0 1 2 1 x x − + − ∫ ; 1 2 0 2 4 5 x dx x x − − − ∫ ; 3 2 2 6 sin cos dx x x π π ∫ ; 2 0 sin2 .cos5x xdx π ∫ 2 1 1 1 dx x x+ + − ∫ ; 3 4 2 0 1 cos cos x dx x π − ∫ ; 2 2 0 sin xdx π ∫ ; 4 2 0 tg xdx π ∫ ; ( ) − ∫ 1 2009 0 1x x dx . PHƯƠNG PHÁP ĐỔI BIẾN SỐ DẠNG I Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 5 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè B1: Đặt ( ) x u t= B2: Lấy vi phân hai vế ở B1 B3: Biến đổi ( ) ( ) ( ) ( ) ( ) 'f x dx f u x u t dt g t dt= = B4: Đổi cận : ( ) ( ) ,a u b u α β = = B5: Tính ( ) ( ) ( ) b a f x dx g t dt G t β β α α = = ∫ ∫ Bài tập: 1 2 2 0 1 x dx− ∫ ; 1 2 0 1 dx x+ ∫ ; 2 2 1 4 x dx − − ∫ ; 2 2 2 2 0 1 x dx x− ∫ ; ( ) 1 3 2 0 1 x dx− ∫ ; ( ) 2 2 2 3 0 2 1 x dx x− ∫ 2 2 2 0 4x x dx− ∫ ; 3 2 1 2 2 1 dx x x− ∫ ; 2 1 2 0 4 x dx x− ∫ ; 3 2 0 3 dx x + ∫ PHƯƠNG PHÁP ĐỔI BIẾN DẠNG II B1: Đặt ( ) ( ) 't u x dt u x dx= ⇒ = B2: Đổi cận ( ) ( ) ;u a u b α β = = B3: Biến đổi ( ) ( ) ( ) ( ) ( ) 'f x dx g u x u x dx g t dt= = B4: Tính ( ) ( ) b a f x dx g t dt β α = ∫ ∫ 3 0 sin cosx xdx π ∫ ; 3 2 0 sin xdx π ∫ ; 3 2 0 cos xdx π ∫ ; 2 0 sin 1 cos x dx x π + ∫ ; 2 4 0 1 2sin 1 sin 2 x dx x π − + ∫ 1 3 2 0 1x x dx− ∫ ; 1 5 3 0 1x x dx− ∫ ; 3 7 2 0 1 x dx x+ ∫ ; 2 3 2 5 4 dx x x + ∫ ; 3 1 2 0 1 x dx x + ∫ ( ) ln3 3 0 1 x x e dx e + ∫ ; ( ) 1 6 5 3 0 1x x dx− ∫ ; 1 0 2 1 xdx x + ∫ PHƯƠNG PHÁP TÍNH TÍCH PHÂN TỪNG PHẦN Ta có b b b a a a udv uv vdu= − ∫ ∫ B1: Biến đổi ( ) ( ) ( ) 1 2 b b a a I f x dx f x f x dx= = ∫ ∫ B2: Đặt ( ) ( ) ( ) ( ) 1 1 2 2 du df x u f x dv f x dx v f x dx = = ⇒ = = ∫ B3: Tính b b a a I uv vdu= − ∫ *) Chú ý: Phải thực hiện theo nguyên tắc sau: - Chọn phép đặt dv sao cho dễ xác đònh được v . - b a vdu ∫ phải được tính dễ hơn b a I udv= ∫ *) Các dạng cơ bản: Kí hiệu ( ) P x là đa thức Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 6 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè Dạng 1: ( ) sinP x xdx ∫ , ( ) , x P x e dx ∫ ( ) , x P x a dx ∫ nên đặt ( ) u P x= Dạng 2: ( ) ln ,P x xdx ∫ ( ) log , a P x xdx ∫ Nên đặt lnu x = , log a u x= Dạng 3: sin x a xdx ∫ , cos x a xdx ∫ thì phảisử dụng tích phân từng phần 2 lần. Chú ý :Nếu ( ) P x hoặc log a x có bậc cao thì ta có thể phải dùng tích phân từng phần nhiều lần liên tiếp để tính. Bài tập: Tính các tích phân sau: ( ) 2 0 1 sinI x x π = + ∫ ; ( ) 2 4 0 2cos 1I x x π = − ∫ ; ( ) 1 2 0 1 x I x e dx= − ∫ ; 2 2 1 ln x I dx x = ∫ ( ) 3 2 2 lnI x x dx= − ∫ ; 3 4 0 sin 4 x I e xdx π = ∫ ; ( ) 1 2 0 2 x I x x e dx − = + ∫ ; ( ) 1 2 2 0 4 2 1 x I x x e dx= − − ∫ 2 0 sinI x xdx π = ∫ ; 2 2 1 ln e I x xdx= ∫ . ỨNG DỤNG TÍCH PHÂN ĐỂ TÍNH DIỆN TÍCH HÌNH PHẲNG BÀI TOÁN 1: Cho hàm số ( ) y f x= liên tục trên [ ] ;a b . Khi đó diện tích hình phẳng (D) giới hạn bởi: - Đồ thò hàm số ( ) y f x= - Trục Ox : ( 0y = ) - Hai đường thẳng ;x a x b= = Được xác đònh bởi công thức : ( ) b D a S f x dx= ∫ 1) Tính ? D S = , biết D giới hạn bởi đồ thò: 2 2y x x= − , 1, 2x x= − = và trục Ox . 2) Tính ? D S = , biết { } , 0, 1, 2 x D y xe y x x= = = = − = 3) Tính ? D S = với { } 2 4 , 1, 3D y x x x x= = − − = − = − 4) Tính ? D S = , với , 0, , 0 3 D y tgx x x y π = = = = = 5) Tính ? D S = , 2 ln , 0, 1, 2 x D y y x x x = = = = = 6) Tính ? D S = , ln 1, , 0, 2 x D x x e y y x = = = = = 7) Tính ? D S = 2 3 1 , 0, 1, 0 1 x x D y x x y x + + = = = = = + Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 7 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè 8) Tính ? D S = , 2 3 sin cos , 0, 0, 2 D y x x y x x π = = = = = BÀI TOÁN 2 : Diện tích hình phẳng giới hạn bởi : + ( ) ( ) 1 :C y f x= , ( ) ( ) 2 :C y g x= + đường thẳng ,x a x b= = Được xác đònh bởi công thức: ( ) ( ) b a S f x g x dx= − ∫ PP giải: B1: Giải phương trình : ( ) ( ) f x g x= tìm nghiệm ( ) 1 2 , , , ; n x x x a b∈ ( ) 1 2 n x x x< < < B2: Tính ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 1 , , n n x x b a x x x b a x S f x g x dx f x g x dx f x g x dx f x g x dx f x g x dx = − + − + + − = − + + − ∫ ∫ ∫ ∫ ∫ 1) Tính ? D S = , ( ) { } 5 1 , , 0, 1 x D y x y e x x= = + = = = 2)Tính ? D S = , 2 2 1 1 , , , sin cos 6 3 D y y x x x x π π = = = = = 3) Tính ? D S = , [ ] { } 2 2 sin , 1 cos , 0;D y x y x x π = = + = + ∈ 4) Tìm b sao cho diện tích hình phẳng giới hạn bởi đồ thò ( ) 2 2 : 1 x C y x = + và các đường thẳng 1, 0,y x x b= = = bằng 4 π BÀI TOÁN 3: Hình phẳng (D) giới hạn bởi đồ thò: ( ) ( ) , ,y f x y g x x a= = = . Khi đó diện tích ( ) ( ) ( ) 0 x a S f x g x dx= − ∫ với 0 x là nghiệm duy nhất của phương trình ( ) ( ) f x g x= . 1) Tính ? H S = , với { } , , 1 x x H y e y e x − = = = = 2) Tính ? H S = , { } 2 1 , , 1H y x x Ox x= = + = 3) Tính ? D S = 3 1 , , 1 x D y Ox Oy x − − = = − 4) Tính diện tích hình phẳng giới hạn bởi : 2 ; 3 ; 0 x y y x x= = − = 5) Tính ? H S = , { } , 2 0, 0H x y x y y= = + − = = BÀI TOÁN 4: Tính diện tích hình phẳng ( ) D giới hạn bởi đồ thò hai hàm số: ( ) ( ) ;y f x y g x= = PP giải: B1 : Giải phương trình ( ) ( ) 0f x g x− = có nghiệm 1 2 n x x x< < < B2: Ta có diện tích hình ( ) D : ( ) ( ) 1 n x D x S f x g x dx= − ∫ 1) Tính diện tích hình phẳng giới hạn bởi: 2 2y x x= − ; 2 4y x x= − + Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 8 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè 2) Tính diện tích hình phẳng giới hạn bởi: 2 2y x x= − + và 3y x= − 3) Tính diện tích hình phẳng giới hạn bởi: 2 2 0y y x− + = và 0x y+ = 4) Tính diện tích hình phẳng giới hạn bởi: 2 5 0y x+ − = và 3 0x y+ − = 5) Tính diện tích hình phẳng giới hạn bởi: 2 4 3y x x= − + và 3y x= + 6) Tính diện tích hình phẳng giới hạn bởi 2 4 4 x y = − và 2 4 2 x y = ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH BÀI TOÁN I: “Tính thể tích của vật thể tròn xoay khi quay miền D giới hạn bởi các đường: ( ) y f x= ; 0y = ; ( ) ; ;x a x b a b= = < xung quanh trục Ox ”. PP giải: Ta áp dụng công thức ( ) 2 2 b b Ox a a V y dx f x dx π π = = ∫ ∫ Chú ý: “Tính thể tích của vật thể tròn xoay khi quay miền D giới hạn bởi các đường: ( ) x f y= ; 0x = ; ( ) ; ;y a y b a b= = < xung quanh trục Oy ”. PP giải: Ta áp dụng công thức ( ) 2 2 b b Oy a a V x dy f y dy π π = = ∫ ∫ 1) Cho hình phẳng D giới hạn bởi : , 0, 0, 3 D y tgx y x x π = = = = = a) Tính diện tích hình phẳng D b) Tính thể tích vật thể tròn xoay sinh ra khi D quay quanh trục Ox 2) Tính thể tích của vật thể tròn xoay sinh ra bởi phép quay xung quanh Oy của hình giới hạn bởi Parabol ( ) 2 : ; 2; 4 2 x P y y y= = = và trục Oy 3) Cho hình phẳng ( ) D giới hạn bởi ( ) 2 : 8P y x= và đường thẳng 2x = . Tính thể tích khối tròn xoay khi lần lượt quay hình phẳng ( ) D quanh trục Ox và trục Oy . BÀI TOÁN II: “Tính thể tích của vật thể tròn xoay khi quay miền D giới hạn bởi các đường: ( ) y f x= ; ( ) y g x= ; ( ) ; ;x a x b a b= = < xung quanh trục Ox ”. PP giải: Ta áp dụng công thức ( ) ( ) 2 2 b Ox a V f x g x dx π = − ∫ 1) Tính thể tích khối tròn xoay khi quay quanh Ox hình phẳng D giới hạn bởi các đường: 2 1 1; 2; ;x x y y x x = = = = 2) Cho hình phẳng D giới hạn bởi 2 2 4 ; 2y x y x= − = + . Quay D xung quanh Ox ta được một vật thể, tính thể tích của vật thể này. Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 9 - Gi¸o ¸n d¹y thªm Chuyªn ®Ị: Hµm sè BÀI TẬP 1) Tính Ox V biết: { } ln , 0, 1,D y x x y x x e= = = = = 2) Cho D là miền giới hạn bởi đồ thò 2 ; 0; 0; 4 y tg x y x x π = = = = a) Tính diện tích miền phẳng D b) Cho D quay quanh Ox , tính thể tích vật thể tròn xoay được tạo thành. 3) Tính Ox V biết: 3 2 , 3 x D y y x = = = 4) Tính Ox V biết: 4 4 0; 1 sin cos ; 0, 2 D y y x x x x π = = = + + = = 5) Tính Ox V biết: { } 2 5 0; 3 0D x y x y= + − = + − = 6) Tính Ox V biết: { } 2 2 ; 2 4D y x y x= = = + 7) Tính Ox V biết: { } 2 2 4 6; 2 6D y x x y x x= = − + = − − + 8) Tính Ox V biết: { } 2 ;D y x y x= = = CHỦ ĐỀ TC 5 SỐ PHỨC ( 4 TIẾT ) 1/ Tính : a/ 5 + 2i – 3(-7+ 6i) ; b/ ( ) ( ) 2 1 2 15 1 tan 2 3 3 ; / 1 2 ; / ; / . 2 3 2 1 tan i i i i c i d e i i α α − + − + + ÷ + − 2/ Giải phương trình: a/ x 2 – 6x + 29 = 0; b/ x 2 + x + 1 = 0. c/ x 2 – 2x + 5 = 0; d/ x 2 +(1+i) x –(1-i) = 0. 3/Trên mặt phẳng phức , hãy tìm tập hợp điểm biểu diễn các số phức thoả mãn hệ thức sau: / 1; / 2 .a z i b z i z− ≤ + = + 4/ Tìm những số thực x và y thoả mãn : ( ) ( ) / 2 5 ; / 1 3 1 5 6a x i yi b x y i i+ = + + + − = − . 5/Tìm nghiệm pt: 2 z z= . 6/ Tìm mơđun và argumen của số phức ( ) 1 cos sin ; 0 . 1 cos sin i z i α α α π α α + + = < < + − 7/ CMR: ( ) ( ) ( ) 100 98 96 3 1 4 1 4 1 .i i i i+ = + − + CHỦ ĐỀ 6 THỂ TÍCH KHỐI ĐA DIỆN ( 4 TIẾT ) Ngun H÷u Thanh THPT B¾c Yªn Thµnh - 10 - . đồ thò với trục tung. 5) Viết phương trình tiếp tuyến của đồ thò hàm số 2 3 1 x y x + = + , biết tiếp tuyến song song với đường thẳng y x= − . 6) Viết phương trình tiếp tuyến của đồ thò. TIẾT) A.PHƯƠNG TRÌNH TIẾP TUYẾN 1) Cho đồ thò ( ) ( ) 3 2 1 : 1 3 C y f x x x x= = − − + . Hãy viết phương trình tiếp tuyến của (C ) tại điểm uốn của ( C). 2) Hãy viết phương trình tiếp tuyến của đồ thò. 2 1 1 x x y x − − = + , biết tiếp tuyến song song với đường thẳng y x= − . 7) Viết phương trình tiếp tuyến của đồ thò hàm số 3 2 3y x x= − , biết tiếp tuyến vuông góc với đường thẳng 3 x y