1. Trang chủ
  2. » Giáo án - Bài giảng

ỨNG DỤNG CỦA TÍCH PHÂN

3 352 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 106,5 KB

Nội dung

Một số khái niệm và các kết quả cơ bản về ứng dụng của tích phân 1. Diện tích hình phẳng xác định bởi đường cong y = f(x) Tìm diện tích hình phẳng S giới hạn bởi các đường y = f(x) ; y = 0 x = a; x = b (a < b) Công thức tổng quát: ( ) b a S f x dx= ∫ (1) Từ (1) suy ra các công thức hay dùng sau đây a) Nếu ( ) 0, [a,b]f x x≥ ∀ ∈ , ta có ( ) b a S f x dx= ∫ b) Nếu ( ) 0, [a,b]f x x≤ ∀ ∈ , ta có ( ) b a S f x dx= − ∫ c) Nếu f(x) tùy ý, khi đó…trong thí dụ sau, ta có ( ) ( ) ( ) b d b a c d S f x dx f x dx f x dx= − + ∫ ∫ ∫ 2. Tìm diện tích hình phẳng giới hạn bởi hai đường cong Tìm diện tích hình phẳng S giới hạn bởi y = f(x) y = g(x) x = a; x = b (a < b) Công thức tổng quát: ( ) ( ) b a S f x g x dx= − ∫ (1) Từ (1) suy ra các công thức hay dùng sau đây a) Nếu ( ) ( ), [a,b]f x g x x≥ ∀ ∈ , ta có ( ) ( ) ( ) b a S f x g x dx= − ∫ b) Nếu ( ) ( ), [a,b]f x g x x≤ ∀ ∈ , ta có ( ) ( ) ( ) b a S g x f x dx= − ∫ c) Trong trường hợp chung, giả sử trong thí dụ sau, ta có ( ) ( ) ( ) ( ) ( ) ( ) c b a c S f x g x dx g x f x dx= − + − ∫ ∫ Trang 1 3. Diện tích hình phẳng giới hạn bởi các đường cong tự khép kín Tìm diện tích hình phẳng S giới hạn bởi hai đường cong y = f(x) và y = g(x) tự khép kín. Giả sử y = f(x) và y = g(x) cắt nhau tại hai điểm A, B có hoành độ tương ứng a, b. Khi đó ( ) ( ) b a S f x g x dx= − ∫ 4. Thể tích của vật thể - Tìm thể tích vật thể V sinh bởi diện tích S quay quanh trục Ox, ở đây S được cho bởi y = f(x) S: y = 0 x = a; x = b (a < b) Công thức tính b 2 a V= f (x)dx π ∫ - Tìm thể tích vật thể V sinh bởi diện tích S quay quanh trục Ox, ở đây S được cho bởi y = f(x) S: y = g(x) x = a; x = b ( ) 0 ( ) ( )g x f x≤ ≤ Công thức tính b 2 2 a V= f (x)-g (x) dx π     ∫ - Tìm thể tích vật thể V sinh bởi diện tích S quay quanh trục Ox, ở đây S được cho bởi hai đường cong y = f(x) và y = g(x) tự cắt. Giả sử y = f(x) và y = g(x) cắt nhau tại hai điểm phân biệt A, B có hoành độ tương ứng là a, b ( ) a b≤ . Giả sử 0 ( ) ( )g x f x≤ ≤ [a,b]x∀ ∈ . Khi đó b 2 2 a V= f (x)-g (x) dx π     ∫ - Tìm thể tích vật thể V sinh bởi diện tích S quay quanh trục Oy, ở đây S được cho bởi Trang 2 y = f(x) S: y = f(a) x = 0 y = f(b) Giả sử -1 y = f(x) x = f (y)⇒ , khi đó f(b) 2 -1 f(a) V= f (y) dy π     ∫ 5. Sơ lược về bất đẳng thức tích phân - Giả sử f(x) và g(x) xác định và liên tục trên [a,b] sao cho ( ) ( ), [a,b]f x g x x≤ ∀ ∈ Khi đó ta có ( ) ( ) b b a a f x dx g x dx≤ ∫ ∫ - Nói riêng, nếu gọi ax f(x), [a,b]; m = min f(x), [a,b]M m x x= ∈ ∈ , khi đó ta có ( ) ( ) ( ) b a M b a f x dx m b a− ≤ ≤ − ∫ Trang 3 . Một số khái niệm và các kết quả cơ bản về ứng dụng của tích phân 1. Diện tích hình phẳng xác định bởi đường cong y = f(x) Tìm diện tích hình phẳng S giới hạn bởi các đường y = f(x) ;. nhau tại hai điểm A, B có hoành độ tương ứng a, b. Khi đó ( ) ( ) b a S f x g x dx= − ∫ 4. Thể tích của vật thể - Tìm thể tích vật thể V sinh bởi diện tích S quay quanh trục Ox, ở đây S được cho.  ∫ - Tìm thể tích vật thể V sinh bởi diện tích S quay quanh trục Ox, ở đây S được cho bởi hai đường cong y = f(x) và y = g(x) tự cắt. Giả sử y = f(x) và y = g(x) cắt nhau tại hai điểm phân biệt

Ngày đăng: 06/07/2014, 18:00

TỪ KHÓA LIÊN QUAN

w