Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
879 KB
Nội dung
Hệ thống bài tập tích phân- ứngdụngcủatíchphân Ch ơng 1: Nguyên hàm Bài 1 Xác định nguyên hàm bằng định nghĩa Bài1: 1) Tính đạo hàm của hàm số 1 )( 2 + = x x xg 2) Tính nguyên hàm của hàm số 32 )1( 1 )( + = x xf Bài2: 1) Tính đạo hàm của hàm số 0#,)( 2 aaxxxg += 2) Tính nguyên hàm của hàm số 0#,)( 2 aaxxf += 3) Tính nguyên hàm của hàm số 0#,)2()( 2 aaxxxh ++= Bài 3: CMR hàm số )1ln()( xxxF += là một nguyên hàm của hàm số x x xf + = 1 )( Bài 4: CMR hàm số 0 # a ,ln 22 )( 22 axx a ax x xF ++++= là một nguyên hàm của hàm số axxf += 2 )( Bài 5: CMR hàm số = > = 0 xkhi 0 0 xkhi 4 )1ln( )( 2 xxx xF là một nguyên hàm của hàm số = > = 0 xkhi 0 0 xkhix.lnx )(xf Bài 6: Xác định a,b,c để hàm số 2 3 x voi32)()( 2 >++= xcbxaxxF là một nguyên hàm của hàm số 32 73020 )( 2 + = x xx xf Bài 2 Xác định nguyên hàm bằng công thức Bài1: Tính các tíchphân bất định sau 1) dx xx 3 11 ; dx x x 3 1 2) dxxxxxx .))(2( 44 + 3) . 12 1 ; . 12 4 2 2 2 dx xx xx dx xx x + ++ + + Bài2: Tính các tíchphân bất định sau 1) . 1 1 ; . 43 4 2 2 dx x x dx x dx + 2) . sin ; . sin1 dx x dx dx x dx + 3) dx xxx dx dx x dxx . )ln(ln.ln. ; . 2cos .sin Bài 3: Tính các tíchphân bất định sau 1) ( ) 32 ; 2 dxdxee xxxx +++ 2) ln. ; cos 2. 2 + xx dx dx x e e x x Tổ toán : Trờng THPT Bình Giang 1 Hệ thống bài tập tích phân- ứngdụngcủatíchphân 3) 49 3.2 ; .)1( 3 + dxdxe xx xx x Bài 4: Tính các tíchphân bất định sau 1) .cot ; cos.sin 2 dxgxdxxx 2) + + 5 cosx-sinx cosx).dx(sinx ; cos ; cos1 x dx x dx Bài 3 Xác định nguyên hàm bằng phơng pháp phântích Bài1: Tìm họ nguyên hàm của các hàm số sau: 1) ( ) 12 164 f(x) ;23)( 2 2 3 + ++ == x xx xxf 2) 6 2 )( ; 132 f(x) 23 24 = + = xx xf x xx 3) 94 194 )( ; 2 1 f(x) 2 3 2 = = x xx xf xx Bài2: Tìm họ nguyên hàm của các hàm số sau: 1) 2f(x) ;)( 44 3 4 ++== xxxxxxf 2) 34 1 )( ; 122 1 )( ++ = + = xx xf xx xf Bài 3: Tìm họ nguyên hàm của các hàm số sau: 1) ( ) xxxxx xf 432 2 2 4.3.2f(x) ;23)( =+= 2) x xx x exf 10 52 f(x) ;)( 11 23 + == Bài 4: Tính các tíchphân bất định sau 1) )1( ; .)1.( 100 2 10 dx x x dxxx 2) 31 . ; .52. 3 dx x dxx dxxx Bài 5: (ĐHQG HN Khối D 1995) Cho hàm số 23 333 3 2 + ++ = xx xx y 1) Xác định a,b,c để )2()1( )1( 2 + + = x c x b x a y 2) Tìm họ nguyên hàm của y Bài 6: Tìm họ nguyên hàm của các hàm số sau 1) xxxxf 444 cossinf(x) ; cos)( +== 2) xgxxxf 266 cotf(x) ; sincos)( =+= 3) x xxxf 4 32 sin 1 f(x) ; sin.cos8)( == 4) xx x xx xf 223 sin.cos 2cos f(x) ; sin.cos 1 )( == 5) 23x x f(x) ; 2sin3 cossin )( 24 ++ = + + = x x xx xf 6) 22 3 )1x(x 1 f(x) ; 1 )( ++ = + = xx xf 7) )x.ex.(1 1x f(x) ; 1 1 )( x + + = = x e xf Bài 7: Tìm họ nguyên hàm của các hàm số sau (Không có hàm ngợc ) 1) 2 22 2 3 2 x 13 f(x) ; 2 3)( x exxx x xxf + = = 2) 2 2 x-1 11 f(x) ; 3 )( xx x x xf + = = 3) ; 1x 2 )( ; x1 1 )( 2 + = ++ = x x xf x xf Bài 4 Xác định nguyên hàm bằng phơng pháp đổi biến số Bài1: Tính các tíchphân bất định sau 1) +++ + = = 3232 ).12( B ; )4( 23428 3 xxxx dxx x dxx A 2) dx xxx x dx x x A ++ = + = . )23( 3 B ; 1 1 24 2 4 2 Tổ toán : Trờng THPT Bình Giang 2 Hệ thống bài tập tích phân- ứngdụngcủatíchphân 3) dx xx x dx xx A + = + = . )1( 1 B ; )1( 1 4 4 26 Bài2: Tính các tíchphân bất định sau 1) dxx xx xdx A .1B ; 11.1 2 22 += +++ = 2) ( ) dx xx dx e dx A x . 1)1(.1 B ; 1 3 2 3 2 +++ = + = 3) + = + = 65 B ; 12.2 2 xx dx xx dx A 4) [ ] = = 2 3 3 1 B ; )2).(1( x dxx xx dx A 5) +++ = +++ = 11 B ; 22)1( 2 xx dx xxx dx A 6) + = ++ ++ = 1 2 B ; 1).43( )186( 2 2 22 3 x dxx xx dxxx A 7) =+= 1 B ;.dx 1. 2 3 23 xx dx xxA Bài 3: Tính các tíchphân bất định sau 1) + + = + = dx x xxx xx dx A sin2 cos.sincos B; 1cossin2 2 2) = = dx xx xx dx A 3 cos.sin 1 B ; sin22sin 3) + == dx xx x xx dx A 1sincos sin B ; cos.sin 2 4 53 Bài 4: Tính các tíchphân bất định sau 1) == dx x x dxxxA 2 B ;)51( 2 1023 2) + = = dx x dx dx x dx A 3232 )4( B ; )4( 3) ; 1 x B ; .1 2 56 = + = x dx x dxx A 4) ; 2 x 2 2 = x dx A Bài 5: Tính các tíchphân bất định sau 1) += dxxaxA 2 + = dx x x . 1 1 B 2) = + = dx x x x dxxx A 6 2 2 3 cos sin B ; cos1 .cos.sin 3) + == dx ee dxxxA xx 2/ 5 1 B ;.sin.cos 4) =+= dx ee dxxxA xx x 4 1 B ;).ln1( Bài 5 Xác định nguyên hàm bằng phơng pháp tíchphân từng phần Bài1: Tìm họ nguyên hàm của các hàm số sau 1) x x x xxf 2sinxf(x) ; ln f(x) ; ln)( 2 2 = == 2) ( ) ;1f(x) ;x .cos)1()( 12x222 + +=+= exxxf 3) ;3cos.f(x) ;.sinx )( -2x2 xeexf x == 4) ; )1cot(cot)( 2 x egxxgxf ++= Bài2: Tính các tíchphân bất định sau 1) == dxbxedxxxA ax ).sin(.B ;.cos. 2) == dxxxdxxeA nx .ln.B ;.cos. 22 3) == dxxxdxexA x ).3sin(.B ; 232 4) = + = dxxx x dxex A x ).2cos(.B ; )2( . 2 2 2 5) + + == x dxex dx x x A x cos1 .)sin1( B ;. sin )ln(sin 2 6) == dxbxedxxxA ax ).sin(.B ;.cos. 7) ;.).724( 223 ++= dxexxxA x Bài 3: Tính các tíchphân bất định sau 1) == dx x x x dx A . cos B ; sin 23 2) = + = dx x x dx x x xA . sin cos B ;. 1 1 ln. 3 2 Tổ toán : Trờng THPT Bình Giang 3 Hệ thống bài tập tích phân- ứngdụngcủatíchphân 3) +== dxxx x dxx A ).1ln(B ; sin . 2 2 Bài 6 Nguyên hàm của các hàm số hữu tỉ Bài1:(ĐHNT HN 1998) Tìm họ nguyên hàm của các hàm số xx x xfa = 3 4 2 )( ) xx xfb = 3 1 )( ) Bài2: (ĐHQG HN 1999) Tìm họ nguyên hàm của các hàm số 2 )1( 1 )( + = xx xf Bài 3: (ĐHQG HN 1995) Cho hàm số 23 333 3 2 + ++ = xx xx y 1) Xác định các hằng số a,b,c để )2( )1()1( 2 + + = x c x b x a y 2) Tìm họ nguyên hàm của họ y Bài 4(ĐHQG HN 2000) Tìm họ nguyên hàm của các hàm số 10022 2001 )1( )( + = x x xf Bài 5: Tìm họ nguyên hàm của các hàm số sau 1) 22 1 )( ; 123 1 )( 22 + = = xx xf xx xf 2) )22( 1 )( ; )123( 1 )( 3222 + = = xx xf xx xf 3) )54( 137 )( ; )54( 137 )( 322 = = xx x xf xx x xf 4) 1 1 f(x) : 2 32 )( 32 2 + = + = x x x xx xf 5) 1)x(x 1 f(x) ; 12 )( 22 3 + = + = xx x xf Bài 6: Tính các tíchphân bất định sau 1) + = = dx xx x xx dxx A . 23 B ; 12 . 324 2) + = = dx x x xx dxx A . 1 B ; 2 . 8 5 36 5 3) = + = dx x x xx dxx A . )10( B ; )1( ).1( 210 4 7 7 Bài 7: Tính các tíchphân bất định sau 1) = + + = dx x x xxx dxx A . )1( B ; 65 ).1( 100 3 23 3 + = ++++ = dx xxx xx xxxx dxx A . 254 4 B ; 1 ).1( 23 2 234 2 Bài 7 Nguyên hàm của các hàm số Lợng giác Bài1: Tìm họ nguyên hàm của các hàm số 1) (ĐHVH 2000) 2 sin)( 2 x xf = 2) ;cot)( ;)( 65 xgxfxt gxf == 3) ;sin.cos)( ;8sin.cos)( 233 xxxfxxxf == 4) xxxxf xxxxf 3cos.2cos.cos)( ;4sin.2cos.cos)( = = Bài2: Tìm họ nguyên hàm của các hàm số 1) + = + + = xx dxxx xx dxx A cossin .sin.cos B ; )cos1(sin )sin1( 2) = ++ = xx dxx xx dx A 2cossin1013 .cos B ; 1cossin 3) = + = xxxx dx xxx dx A 22 22 cos5cos.sin8sin3 B ; cos2sinsin 4) + = + = xx dxx x dxx A 442 cossin .2cos B ; 1sin .2sin 5) == xx dx xx dx A 5342 cos.sin B ; cos.sin 6) = + = x dx xx dxxx A 3 cos B ; cos2sin )cos(sin Tổ toán : Trờng THPT Bình Giang 4 Hệ thống bài tập tích phân- ứngdụngcủatíchphân 7) + == 1cos2 ).sin(sin B ; sin .cos 2 3 3 4 x dxxx x dxx A 8) + = + = 12sin B ; 2sin1 ).sin(cos x dx x dxxx A (ĐH NT TPHCM 2000) Bài 8 Nguyên hàm của các hàm số Vô tỉ Bài1: Tính các tíchphân bất định sau 1) =+= 12 . B ;. 24 3 43 xx dxx dxxxA 2) ++++ +++ = +++ = 11 )1( B ; 1 2 2 2 xxx dxxxx xxx dx A 3) = ++ + = 322 )1( B ; 16 ).54( x dx xx dxx A Bài2: Tính các tíchphân bất định sau 1) + = = 22 23).1( B ; 1)1( xxx dx xx dx A 2) ++ = ++ = 12)12( B ; 3212 3 2 xx dx xx dx A Bài 3(ĐHY HN 1999) Biết rằng +++= + Cxx x dx )3ln( 3 2 2 Tìm nguyên hàm += dxxxF .3)( 2 Bài 4(HVBCVT TPHCM 1999). Tìm họ nguyên hàm của hàm số 10 1 )( + = x x xF Bài 5:(ĐH KTQD HN 1999) Tìm họ nguyên hàm của hàm số 1212 1 )( ++ += xx tgxxF Bài 6(ĐHY Thái Bình 2000) Tính tíchphân = 1 2 xx dx I Bài 9 Nguyên hàm của các hàm số Siêu việt Bài1: Tìm họ nguyên hàm của các hàm số 1) x exxxF ).23()( 2 ++= 2) x exxF += ) 4 cos(.2)( 3) xxxx xF 4.3.2F(x) ;)23()( 32x22 =+= 4) xx x ee exF == x 23 e F(x) :)( 5) x x x x e e xF 10 52 F(x) : 1 )( 11x52 + = + = 6) 2 x 2 2 1).e-(x F(x) : 1 ).1( )( x x exx xF x = + ++ = Bài2: Tính các tíchphân bất định sau 1) == dxxedxbxeA xax .sin.B ;).sin(. 22 2) == dxexdxxxA xn 32 .B ;.ln. 3) +== dxxxdxxA ).12ln(.B ;).sin(ln 2 4) ;.).4252( 223 ++= dxexxxA x 5) + == x x e dxe x dxx A 1 2 B ; sin )ln(sin 2 6) = + + = x dxx x dxex A x 2 cos ).ln(cos B ; cos1 ).sin1( 7) ;. 1 1 ln. 1 1 2 + = dx x x x A Bài 3: Tính các tíchphân bất định sau 1) + ++ = + = 1. )1ln(. B ; 1 2 2 x dxxxx e dx A x 2) ++= + = dxe xx dxx A x .2eB ; 1ln. .ln x Tổ toán : Trờng THPT Bình Giang 5 Hệ thống bài tập tích phân- ứngdụngcủatíchphân Ch ơng 2: tíchphân Bài 1 Tính tíchphân bằng phơng pháp phântích Bài 1: Tính các tíchphân 1) + =+= 3 1 2 1- 2 3 2x x.dx B ;).1( dxxA 2) ++ = = 2 1 5 2 22x dx B ;. 527 e x dx x xx A 3) + + = 2 1 2 ; ln ).1( xxx dxx A = 2 6 3 3 ; sin .cos x dxx B 4) + == 1 0 4 0 2 dx;B ; cos . xx xx ee ee x dxtgx A 5) + = + = 2 1 2 1 0 ; 84 B ; . xx dx ee dxe A xx x 6) + = + = 2 0 3ln 0 ; sin1 B ; . x dx ee dx A xx 7) = + = 2 4 4 1 2 1 2 ; sin B ; 1 x dx xx dx A 8) = = + = 2 1 3 0 22 2 3 t ; 49 6 B ; cos3sin x xx x dx xx dx A Bài 2: Tính các tíchphân == 2 4 2 0 2 ) 4 (cos.sinB ;.3sin.5cos dxxxdxxxA Bài 3: Tính các tíchphân +== 3 3 4 1- 2 .23B ;.2 dxxxdxxA Bài 4: (ĐH QGHN Khối B 1998) Tìm các hằng số A,B BxAxF += )sin(.)( thoả mãn F(1) = 2 và = 1 0 4).( dxxF Bài 5: Cho xbxaxF 2cos.2sin.)( = xác định a,b biết == 2b a , 1. va2 2 dxaF Bài 6: (ĐHSP Vinh 1999) CMR = 4 0 4 0 2 2 ) 5 103 (log dxdx x xx Bài 7: (ĐHBKHN 1994)Tìm a,b để 2)( 2 ++= x b x a xF thoả mãn == 1 2 1 , 3.ln2-2F(x).dx va4)(xF Bài 8: Cho bxaxF += 2sin.)( xác định a,b biết ( ) == 2 0 , 3).( va40 dxxFF Bài 2 Tính tíchphân bằng phơng pháp đổi biến số Bài 1: Tính các tíchphân sau 1) (ĐHNN1 HN 1999) = 1 0 19 ;.)1( dxxxA 2) (ĐHSP Quy Nhơn) +++= 1 0 102 ;.)321)(31( dxxxxI 3) (ĐHTM 1995) + = 1 0 2 5 ;. 1 dx x x I Tổ toán : Trờng THPT Bình Giang 6 Hệ thống bài tập tích phân- ứngdụngcủatíchphân 4) + = a xa dx I 0 222 ; )( 5) (ĐHKT HN 1997) = 1 0 635 ;.)1( dxxxI 6) (ĐH TCKTHN 2000) ++ = 1 0 24 1 . xx dxx I Bài 2: : Tính các tíchphân sau 1) ;. 4 B ;. 1 1 0 2 2 1 0 = = dx x x dx x x A 2) 1 B ;. 1 0 1 2 1 2 2 2 2 ++ = = xx dx dx x x A 3) 1995) -(DHTM ;.1. 1 0 = dxxxA 4) 1998) (DHYHN ;.1 1 2 1 2 = dxxA 5) 2000) HP (DHY ;.)1( 1 0 32 = dxxA 6) 1998) (HVQY ;. 1. 3 2 2 + = dx xx dx A 7) (ĐHGTVT HN 1996) += 3 0 25 ;.1 dxxxA Bài 3: Tính các tíchphân sau 1) == 3 0 4 0 2cos . B ;.sin 2 x dxxtg dxxA 2) = ++ = 3 6 2 2 0 cos.sincos . B; 1cossin xxx dxtgx xx dx A 3) (ĐHQGTPHCM 1998) + = 2 0 4 sin1 .2sin x dxx I 4) (CĐHQ TPHCM 1999) = 2 0 2 cossin711 .cos xx dxx I 5) (HVKTQS 1996) = 2 3 3 3 .cot. sin .sinsin dxgx x xx I 6) (ĐH Y Dợc TPHCM 1995) + = 0 2 cos49 .sin. x dxxx I 7) (HVBCVT HN 1998) + = 2 0 2 3 cos1 .cos.sin x dxxx I 8) (CĐSP TPHCM 1997) + = 6 0 2 sinsin56 .cos xx dxx I 9) (HVNH HN 1998) = 0 2 .cos.sin. dxxxxI Bài 4: Tính các tíchphân sau 1) + = + = 1 0 2 1 . 2 2 ln. 4 1 ; 2 .ln2 dx x x x B x dxx A e 2) (ĐH CĐoàn 1999) + = 2ln 0 1 x e dx I 3) (ĐH Y HN 1999) + = 1 0 2 xx ee dx I 4) ++ + == 2ln 0 2x 2x 1 0 . 33e 3e B ;. dx e e dxeA x x x Bài 5: Tính các tíchphân sau (Tham khảo) **Đổi biến dạng luỹ thừa cơ bản*** 1) ;.1B ;. 1 1 0 3 3 0 = + = dxxdx x x A 2) ; 1 B ;1 1 1 2 1 0 3 ++ == dx xx x dxxxA Tổ toán : Trờng THPT Bình Giang 7 Hệ thống bài tập tích phân- ứngdụngcủatíchphân 3) ; 1 B ;2 1 0 6 2 2 1 246 + =+= dx x x dxxxA 4) ;B ; 4 1 4 1 2 = + = dx x e xx dx A x **Đổi biến hàm lợng giác cơ bản*** 5) + == 2 0 4 6 . cos31 sin B ;.cot dx x x dxgxA 6) +=+= 2 0 cos 6 0 2 cos.B ;.cossin41 dxxedxxA x 7) = + = 2 0 3 4 0 sinsinB ; cossin cossin dxxxdx xx xx A 8) == 4 0 3 3 4 3 6 2 cos sin B ; cos sin dx x x dx x x A 9) = + = 3 6 4 3 6 0 2 2 sin cos B ; 1 1 dx x x dx xtg xtg A 10) + = + = 2 0 2 4 0 cos1 2sin B ; 2sin2 cossin dx x x dx x xx A **Đổi biến hàm mũ logarit cơ bản*** 11) = + = ee xx dx dx x x A 1 2 1 ln1 B ; ln1 12) + = + = ee e x dxxx xx dx A 1 3 2 2 ln1)(ln B ; )ln1(cos 4 1 13) = + = 2ln2 2ln 1 0 1 B ; 1 xx e dx e dx A 14) + = + = 1 0 3ln 0 B ; xx x xx ee dxe ee dx A **Bài tập tổng hợp ** * * 15) + = + + = 13ln 5ln1 1)3( B ; )1( )1( xx x e x ee dxe xex dxx A 16) ; 1 1 ln 1 1 2 1 0 2 + = dx x x x A 17) == 4 0 22 3 6 2 sincos4cos B ; cos.sin xxx dx dx xx dx A Bài 3 Tính tíchphân bằng phơng pháp tíchphân từng phần Bài 1: Tính các tíchphân sau 1) == 2 0 2 3 0 .cos.B ;.cos. dxxxdxxxA 2) == 2 0 3 4 2 .3cos.B ; sin . dxxe x dxx A x 3) == e x dxxdxxeA 00 22 ).cos(lnB ;.sin 4) == e x dxxdxexA 1 3 2ln 0 .lnB ; 5) +== 1 0 2 0 2 ).1ln(.B ;.ln. dxxxdxxxA e 6) == 2 1 2 1 2 . ln B ;.)ln1( dx x x dxxA e 7) ;. ln 1 ln 1 2 2 = e e dx x x A 8) == e x dxxdxeA 1 2 4 4 1 )ln1(B ; 9) =+= 2 01 2 cos.sin.B ;.ln)1( xdxxxdxxxxA e 10) =++= 2 2 4 2 3 0 2 )(cosB ;)1ln( dxxdxxxA Tổ toán : Trờng THPT Bình Giang 8 Hệ thống bài tập tích phân- ứngdụngcủatíchphân 11) + + == 2 3 4 0 cos1 sin B ;sin 2 dx x xx dxxA 12) == ee e dx x x dx x x A 1 2 ln B ; )ln(ln 2 Bài 2: ( Một số đề thi ) Tính tíchphân sau: 1) (ĐHBKTPHCM 1995) = 2 0 2 .cos. dxxxI 2) (ĐHQG TPHCM 2000) = 1 0 2 ).(sin dxxeI x 3) (CĐKS 2000) += e dxxxI 1 .ln).22( 4) (ĐHSPHN2 1997) = 4 0 .2sin.5 dxxeI x 5) (ĐHTL 1996) = 2 0 2 .cos. dxxeI x 6) (ĐH AN 1996) = 0 2 .sin. dxxxI Bài 4 Một số dạng tíchphân đặc biệt Bài 1: Tính các tíchphân sau 1) == 1 1 35 .B ;.2cos 2 dxexdxxxA x 2) + = + = 2 2 3 2 1 2 1 2 . cos1 sin B ;. 1 1 ln. dx x x dx x x xA Bài 2: Tính các tíchphân sau 1) + = + = 2 0 20042004 2004 2 0 4 . sincos cos B ;. sin1 2sin dx xx x dx x x A 2) + = + = 0 2 0 2 . cos1 sin. B ;. cos3 sin. dx x xx dx x xx A 3) ; 13 .sin 2 + = x dxx A Bài 3: Tính các tíchphân sau 1) = 3 0 ;.5cos.3sin.2sin.sin dxxxxxA 2) +== 2 00 3 ).sin(sinB ;.sin.A dxnxxdxxx 3) ++ == 4 4 4 357 2 1 2 1 92 cos )1( ;.sin.A x dxxxxx Bdxxx Bài 4: (Một số đề thi ) 1) (ĐHPCCC 2000) Tính + = 1 1 2 . 21 1 dx x I x 2) (ĐHGT 2000 )Tính + = 2 2 2 . sin4 cos dx x xx I 3) (ĐHQG HN 1994) Tính = 0 3 .sin. dxxxI 4) (ĐHNT TPHCM 1994)Tính + = dx x I x . 13 sin 2 5) (HVBCVTHN 1999)Tính + = 1 1 4 . 21 dx x I x 6) (ĐH Huế 1997) Cho hàm số = = 2 neu x )0( 2 x0neu )( )( f tgxf xg a) CMR g(x) liên tục trên 2 ;0 Tổ toán : Trờng THPT Bình Giang 9 Hệ thống bài tập tích phân- ứngdụngcủatíchphân b) CMR : = 4 0 2 4 ).().( dxxgdxxg Bài 5 Tíchphân các hàm số hữu tỉ Bài 1: : Tính các tíchphân sau 1) ; 23 B ; )1( . 0 1 2 3 2 9 2 + = = xx dx x dxx A 2) ; )1( B ; 1 .22( 4 2 10 3 2 1 3 2 = + + = x dxx x dxxx A 3) ; )1()3( B ; 65 ).116102( 1 0 22 1 1 2 23 ++ = + + = xx dx xx dxxxx A 4) ; 23 )47( B ; 65 ).63( 0 1 3 1 1 23 23 + = + ++ = xx dxx xxx dxxxx A 5) ; 34 B ; 2 2 1 24 2 1 23 ++ = ++ = xx dx xxx dx A 6) ; )4( . B ; ).14( 1 0 28 3 2 1 34 23 = + = x dxx xx dxxxx A 7) ; )1.( ).1( B ; )1( 3 1 4 4 2 1 26 + = + = xx dxx xx dx A 8) + ++ = = 1 0 22 2 4 3 36 5 ; )1)(2( 1322 B ; 2 3 3 dx xx xx xx dxx A Bài 2: (Một số đề thi) 1) (CĐSP HN 2000): + + = 3 0 2 2 . 1 23 dx x x I 2) (ĐHNL TPHCM 1995) ++ = 1 0 2 65xx dx I 3) (ĐHKT TPHCM 1994) + = 1 0 3 . )21( dx x x I 4) (ĐHNT HN 2000) ++ +++ = 1 0 2 23 92 ).1102( xx dxxxx I 5) (ĐHSP TPHCM 2000) ++ + = 1 0 2 65 ).114( xx dxx I 6) (ĐHXD HN 2000) + = 1 0 3 1 .3 x dx I 7) (ĐH MĐC 1995 ) ++ = 1 0 24 34xx dx I 8) (ĐHQG HN 1995). Xác định các hằng số A,B,C để 21 )1(23 333 23 2 + + + = + ++ x C x B x A xx xx Tính dx xx xx I . 23 333 3 2 + ++ = 9) (ĐHTM 1995) + = 1 0 2 5 1 . x dxx I 10)(ĐH Thái Nguyên 1997) x x dxx I += + = x 1 t: HD 1 ).1( 2 1 4 2 11)Xác định các hằng số A,B để 1 )1()1( 2 22 + + + = + + x B x A x x Tính dx x x I . )1( )2( 3 2 2 + + = 12)Cho hàm số 32 )1()1( )( + = xx x xf a) Định các hệ số A,B,C,D,E sao cho + + = + ++ = 11 )2)(1( )( 2 2 x dx E x dx D xx CBxAx dxxf b) Tính 3 2 )( dxxf Bài 6 Tíchphân các hàm số lợng giác Bài 1: Tính các tíchphân sau Tổ toán : Trờng THPT Bình Giang 10 [...]... thể tíchcủa vật thể tròn xoay sinh ra bởi phép quay quanh Ox của hình phẳng S giới ( P1 ) : x = 2 y 2 va (P2 ) : x = 1 3 y 2 hạn bởi các đờng Bài 2 Thể tíchcủa các vật thể Tổ toán : Trờng THPT Bình Giang } D = y = x 2 ; y = x Tính thể tích vật thể tròn 3) Tính diện tích S giới hạn bởi đồ thị y=x.ex , x=1 , y=0 (0 x 1 ) 15 Hệ thống bài tập tích phân- ứngdụngcủatíchphân 9) (ĐHXD 1998) Tính thể tích. .. 2 a) Khảo sát và vẽ đồ thị hàm số Năm 2003 2 3 c) Tính thể tích giới hạn bởi (C) quay quanh Ox 1) Khối A: Tính tíchphân I = 5 0 2 3) Khối D: Tính tíchphân I = x x dx 0 Năm 2004 1 và đoạn 0 x của trục Ox Tính thể tích b) Trục Oy 1 + sin 2 x 2 2 a) Trục Ox x x2 + 4 2 2) Khối B: Tính tíchphân I = (1 2 sin x)dx 13) Cho miền (H) giới hạn bởi đờng cong y=sinx 1) Khối A: Tính tíchphân I = khối... x 3 và 2 tiếp tuyến tại các điểm A(0;-3) và B(3;0) Tổ toán : Trờng THPT Bình Giang 14 Hệ thống bài tập tích phân- ứng dụngcủatíchphân 11)(ĐH Huế 1999) Tính diện tích giới hạn bởi 1) (ĐHNN1 HN 1997): Cho hình phẳng giới hạn y = ( x + 1) 5 x; y = e x va x = 1 bởi D = y = tgx; x = 0; x = 12)Tính diện tích giới hạn bởi y = sin x; y = cos x va truc Oy voi 0 x 4 a) 13)(HVQY 1997) Tính diện tích. .. TPHCM 1998) I = 0 x.dx 2x + 1 Bài 8 Tíchphân các hàm số siêu việt Bài 1: (Một số bài cơ bản) 1 dx 1) (ĐHCĐ 2000) I = 2 x +3 0 e Tổ toán : Trờng THPT Bình Giang 5.dx x +5 e 0 1 (1 e x ) dx ex +1 Bài 9 Tíchphân các hàm số chứa giá trị tuyệt đối Bài 1: (Một số bài tập cơ bản) 2 2 0 0 2 1) A = x 1.dx; B = x + 2 x 3 dx 13 Hệ thống bài tập tích phân- ứng dụngcủatíchphân 1 2) I = ( 2x 1 x ) 2 dx;... diện tích hình phẳng giới hạn bởi D Tính thể tích vật thể tròn xoay khi D quay quanh Ox (C) : y = x 3 2 x 2 + 4 x 3 và tiếp tuyến với đờng cong (C) tại điểm có hoành độ 2) Tính thể tíchcủa vật thể tròn xoay sinh ra bởi phép quay quanh Ox của hình giới hạn bởi x=2 trục Ox và (P) y=x2-ax (a>0) 14)(ĐHKT 2000) Tính diện tích giới hạn bởi 3) (ĐHXD 1997) Tính thể tíchcủa vật thể tròn y= 4x (C ) và Ox,... Chơng 3: 1 5 3 x + 3 .dx x 4 1 5 5 ( Một số ứngdụngcủa 3) I = tíchphân ) 4) I = x 4 x + 3 + x 4 x dx 2 2 0 2 A= 3 1 x + 2 2 dx; B = x 3 4 x 2 + 4 x dx; x 0 1) (ĐHBKHN 2000): Tính diện tích giới hạn bởi 2 1 2 Bài 2: Tính tíchphân sau : 1) I = Bài 1 Diện tích phẳng y = sin 2 x cos 3 x; y = 0 va x = 0; x = 2) (ĐHTCKT 2000): Tính diện tích giới hạn bởi 3 8 y = e x ; y = e x va x = 1... 8 6 Tổ toán : Trờng THPT Bình Giang x x + 1 2 1 6) A = 2 2 dx x +1 3 dx 1 x ; B= x x 2 + 1.dx 0 7 2 ; B=3 0 dx 2x + 1 3 ; (*)B = 0 ( x + 1 2)dx x + 2x + 1 + x + 1 2 Hệ thống bài tập tích phân- ứng dụngcủatíchphân 0 8) (*) A = 1 3 1 x + 1 dx ; x 1 x +1 dx + ex 0 e 2) (ĐHY HN 1998) I = ***đổi biến lợng giác **** 1 2 9) A = 4 x dx; B = 0 2 10) A = 1 ln 3 2 1 1 x2 dx x2 1 2 2x 4) (ĐHAN 1997)...Hệ thống bài tập tích phân- ứng dụngcủatíchphân 5) (HVKTQS 1996):Tính 2 3 dx tgx.dx ; B= 2 1 + sin x + cos x cos x sin x cos x 0 1) A = 6 I= 3 3 tg 4 x.dx ; B = ( cos x sin x ).dx 2) A = cos 2 x 0 6 4 2 I = sin x cos... trình x=1 và x=3 thể tích vật thể này 6) (HVQY 1997): Cho hình phẳng giới hạn bởi { xoay khi D quay quanh trục Ox (C ) : y = x 2 trục Ox và đờng thẳng có phơng trình x=2, y=x 7) (HVKTQS 1995) Tính thể tích do D quay quanh Ox 4) Tính diện tích S giới hạn bởi đồ thị D = y = 0; y = 1 + cos 4 x + sin 4 x ; x = ; x = 2 ( P ) : y 2 = 2 x và đờng thẳng có phơng trình y=2x-2 5) Tính diện tích S giới... 1998) Tính 2 dx 1 + sin 2 x 0 4) (ĐH Công Đoàn 1999): Tính I = I= 2 6 Tổ toán : Trờng THPT Bình Giang 11 1 + sin 2 x + cos 2 x .dx sin x + cos x sin 2 x.dx cos 6 x Hệ thống bài tập tích phân- ứng dụngcủatíchphân 4 25) (ĐHTCKT HN 1996) 15) (ĐHT HN 1999) Tính I = 3 dx x sin 2 2 16) (ĐHNT HN 1994b) Tính I = 2 sin x + 7 cos x + 6 4 sin x + 3 cos x + 5 dx I= 1 + sin x dx 0 2 0 2 17) (ĐHQG . Giang 5 Hệ thống bài tập tích phân- ứng dụng của tích phân Ch ơng 2: tích phân Bài 1 Tính tích phân bằng phơng pháp phân tích Bài 1: Tính các tích phân 1) + =+= 3 1 2 1- 2 3 2x x.dx B ;).1(. Bình Giang 9 Hệ thống bài tập tích phân- ứng dụng của tích phân b) CMR : = 4 0 2 4 ).().( dxxgdxxg Bài 5 Tích phân các hàm số hữu tỉ Bài 1: : Tính các tích phân sau 1) ; 23 B ; )1( . 0 1 2 3 2 9 2 + = = xx dx x dxx A 2) . Trờng THPT Bình Giang 2 Hệ thống bài tập tích phân- ứng dụng của tích phân 3) dx xx x dx xx A + = + = . )1( 1 B ; )1( 1 4 4 26 Bài2: Tính các tích phân bất định sau 1) dxx xx xdx A .1B ; 11.1 2 22 += +++ = 2) ( ) dx xx dx e dx A x . 1)1(.1 B