1. Trang chủ
  2. » Giáo án - Bài giảng

CHUYÊN ĐỀ NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG CỦA TÍCH PHÂN

80 146 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 80
Dung lượng 3,19 MB

Nội dung

THÂN GỬI QUÝ THẦY CÔ VÀ CÁC EM HỌC SINH BỘ CÂU HỎI TRẮC NGHIỆM VỀ NGUYÊN HÀM - TÍCH PHÂN - ỨNG DỤNG CỦA TÍCH PHÂN. BỘ TÀI LIỆU ĐƯỢC VIẾT DƯỚI DẠNG CÂU HỎI TRẮC NGHIỆM TỪ DỄ TỚI KHÓ CÓ ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT GIÚP THẦY CÔ CÓ THÊM TÀI LIỆU KHI RA ĐỀ THI, CÁC EM HỌC SINH CÓ THÊM TÀI LIỆU ÔN TẬP NGUYÊN HÀM TÍCH PHÂN VÀ ỨNG DỤNG.

Phần Tích Phân-Giải tích 12 ÁP DỤNG BẲNG NGUYÊN HÀM VÀ PHÂN TÍCH A – LÝ THUYẾT TĨM TẮT Khái niệm nguyên hàm  Cho hàm số f xác định K Hàm số F gọi nguyên hàm f K nếu: F '(x)  f (x) , x  K  Nếu F(x) nguyên hàm f(x) K họ nguyên hàm f(x) K là: f (x)dx  F(x)  C � , C  R  Mọi hàm số f(x) liên tục K có nguyên hàm K Tính chất f '(x)dx  f (x)  C  � f (x)dx �� g(x)dx  f (x) �g(x) dx  �  � kf (x)dx  k � f (x)dx (k �0)  � Nguyên hàm số hàm số thường gặp x n 1 n x dx  k.dx  k.x  C � n 1  C 1) � 2) 1 dx    C dx  ln x  C � � x x x 3) 4) 1 1 dx   C dx  ln ax  b  C n n 1 � � (ax  b) a(n  1)(ax  b) a 5) ; 6) (ax  b) 7) sin x.dx   cos x  C � 9) sin(ax  b)dx   cos(ax  b)  C � a 8) cos x.dx  sin x  C � 10) cos(ax  b)dx  sin(ax  b)  C � a 1 dx  � (1 tg x).dx  tgx  C � cos x 11) dx  �  cot g x  dx   cot gx  C  � sin x 1 dx  tg(ax  b)  C � a 13) cos (ax  b) e dx  e � x 15) (ax  b) 17) e � x dx  e (ax  b)  C a ax a dx  C � ln a 19) 1 x 1 dx  ln C � x  x  21) 1 x a dx  ln C 2 � x  a 2a x  a 23) 25)  x2 dx  arcsin 12) 1 dx   cot g(ax  b)  C (ax  b) a 14) � sin 16) e dx  e � x C x �a x C a x C (ax  b) n 1 (ax  b) dx  C � a n 1 18) (n �1) dx  arctgx  C � x 1 20) 1 x dx  arctg  C 2 � x a a a 22) �1  x dx  arcsin x  C 24) �x �1 dx  ln x  x �1  C 26) n Trang Phần Tích Phân-Giải tích 12 �x 27) �a dx  ln x  x �a  C 28) x a x a  x  arcsin  C 2 a x a x �a dx  x �a � ln x  x �a  C � 2 29) �a  x dx  B – BÀI TẬP Câu 1: Nguyên hàm A x  x  x3   C 2x   3x  B là: x   3x   C 1  x2  là: Câu 2: Nguyên hàm x x  x 3 x x  C    C 3x A B x f  x  x Câu 3: Nguyên hàm hàm số 3 x C �5 Câu 5: A � � �x 5ln x  F x  x C C F x  x3  C x là: C C F x  4x C 33 x F x  x C D D F x  4x 3 x2 F x   C x C B  x  1 x 5 5ln x  x C x C 5ln x  x C 5 C D 5ln x   B   3x  f  x  Câu 7: Nguyên hàm hàm số A D  � x3 � dx � bằng: dx � Câu 6:  3x bằng: C 2  3x   A F x  2x  x  x   C x  x  C 3x C 3x x C A B f  x  x x là: Câu 4: Nguyên hàm hàm số 2 F x  C F x   C x x A B F x  C � 6x � x2 � 1 � C � � D ln  3x  C C x x x x2 là: C B 23 x C x D ( x � Câu 8: Tìm nguyên hàm: 53 x  ln x  C A C F x  F x    ln 3x   C D  C x 1 x2 1 x C x  )dx x B  33 x  ln x  C Trang Phần Tích Phân-Giải tích 12 33 x  ln x  C C 33 x  ln x  C D (x �  Câu 9: Tìm nguyên hàm: x3  3ln x  x C A 3  x )dx x x3  3ln X  x B x3  3ln x  x C D x3  3ln x  x C C x )dx 5 5   x C  x C A x B x (x   x )dx � x Câu 11: Tìm nguyên hàm: x  ln x  x C A 4 x  ln x  x C C dx �1  x Câu 12: Tính , kết là: C A  x B 2  x  C ( � Câu 10: Tìm nguyên hàm: x  5   x C C x 5  x C D x x  ln x  x C B 4 x  ln x  x C D C C 1 x D C  x �x  � f (x)  � � � x � hàm số hàm số sau? Câu 13: Nguyên hàm F(x) hàm số x3 x3 F(x)    2x  C F(x)    2x  C x x A B �x � � x� F(x)  �3 � C �x � � � � � D x(2  x) f (x)  (x  1) Câu 14: Hàm số không nguyên hàm hàm số x3 x F(x)  C x2 C x2  x 1 x2  x 1 A x  B x  Câu 15: Kết sai kết sao? x 1  5x 1 dx   x C x x � 10 5.2 ln ln A x2 x 1 dx  ln x C �  x x  C x2  x  C x  x2 D x  x  x 4  dx  ln x   C � x 4x B D tan � xdx  tan x  x  C x  2x  � x  dx bằng: Câu 16: Trang Phần Tích Phân-Giải tích 12 x2  x  ln x   C A x2  x  ln x   C C x2  x  ln x   C B D x  ln x   C x2  x  � x  dx bằng: Câu 17: A x2  2x  5ln x   C B x  5ln x   C x2  2x  5ln x   C C D 2x  5ln x   C 20x  30x  x F x  ax  bx  c 2x      2x  Để hàm số Câu 18: Cho hàm số: ; với F x nguyên hàm hàm số f (x) giá trị a, b, c là: f (x)  A a  4; b  2; c  B a  4; b  2;c  1 Câu 19: Nguyên hàm hàm số x 3x   ln x  C A F(x) = f  x C a  4; b  2;c   x – 3x       x D a  4; b  2; c  1 x 3x   ln x  C B F(x) = x 3x   ln x  C D F(x) = x 3x   ln x  C C F(x) = 2x f  x  x  Khi đó: Câu 20: Cho f  x  dx  ln   x   C A � f  x  dx  ln   x   C C � f  x  dx  3ln   x   C B � f  x  dx  ln   x   C D � 2 2 x  3x  3x  1 f (x)  F(1)  x  2x  Câu 21: Tìm nguyên hàm F(x) hàm số biết 2 13 F(x)  x  x  6 F(x)  x  x   x 1 x 1 A B C F(x)  x2 13 x  x 1 F(x)  x2 x 6 x 1 D �1 � ; �� � �là: Câu 22: Nguyên hàm hàm số y  3x  �3 2 3 x x C 3x  1  C 3x  1  C   A B C D Câu 23: Tìm hàm số F(x) biết F’(x) = 4x – 3x + F(-1) = A F(x) = x4 – x3 - 2x -3 B F(x) = x4 – x3 - 2x + C F(x) = x4 – x3 + 2x + D F(x) = x4 + x3 + 2x + f (x)  Câu 24: Một nguyên hàm  x ln x  x  x2 1 x x C  là: Trang Phần Tích Phân-Giải tích 12 A   x ln x  x   x  C B C x ln x   x  C D y   ln x  x   x  C   x  ln x  x   x  C 2x  x2 là: Câu 25: Nguyên hàm hàm số 2x 3  C 3x  C x x A B 2x 3 x3  C  C x C D x f (x)dx  F(x)  C f (a x  b)dx Câu 26: Cho � Khi với a  0, ta có � bằng: 1 F(a x  b)  C F(a x  b)  C F(a x  b)  C A 2a B C a D F(a x  b)  C 1 f (x)  (x  2) là: Câu 27: Họ nguyên hàm F(x) hàm số A F(x)  C x2 B Đáp số khác C F(x)  1 C x2 D F(x)  1 C (x  2)3 x2  x 1 f (x)  x  Câu 28: Họ nguyên hàm F(x) hàm số x F(x)   ln | x  1| C 2 A B F(x)  x  ln | x  1| C F(x)  x  C x 1 C D Đáp số khác Câu 29: Nguyên hàm F x hàm số f  x   2x  x  F  0  thỏa mãn điều kiện x x   4x 4 C D x  x  2x B 2x  4x f  x   x3 Câu 30: Nguyên hàm hàm số � x xC 2 A B 3x  C C 3x  x  C x5  �x dx ta kết sau đây? Câu 31: Tính x6 x C x3 x x4  C A Một kết khác B C Câu 32: Một nguyên hàm F(x) f (x)  3x  thỏa F(1) = là: A A x  B x  x  C x  x4 C D x3  C D 2x D 2x  f  x Câu 33: Hàm số có nguyên hàm K f  x f  x A xác định K B có giá trị lớn K f  x f  x C có giá trị nhỏ K D liên tục K Câu 34: Tìm họ nguyên hàm hàm số f (x)  x  x  x ? Trang Phần Tích Phân-Giải tích 12 32 43 54 F(x)  x  x  x  C A 4 54 F(x)  x  x  x  C 3 C 23 43 54 F(x)  x  x  x  C B 2 54 F(x)  x  x  x  C 3 D Câu 35: Cho hàm số f (x)  x  x  2x  Gọi F(x) nguyên hàm f(x), biết F(1) = x x3 49 x x3 F(x)    x2  x  F(x)    x2  x 1 12 A B C F(x)  x4 x3   x2  x  D F(x)  x4 x3   x2  x Câu 36: Họ nguyên hàm hàm số y  (2x  1) là: 1 (2x  1)6  C (2x  1)  C (2x  1)  C A 12 B C D 10(2x  1)  C f (x)  x9  x Câu 37: Tìm nguyên hàm hàm số f(x) biết  x  9  x3  C A 27 B Đáp án khác C 3  x  9  x3  C 3(  x    x ) C D 27 Câu 38: Mệnh đề sau sai? f (x)dx  F(x)  C  a; b  C số � A Nếu F(x) nguyên hàm f (x)  a; b có nguyên hàm  a; b  B Mọi hàm số liên tục (x)  f (x), x � a; b   a; b  � F� C F(x) nguyên hàm f (x) � f (x)dx  f (x) � D F  2  F x f  x   x2 Câu 39: Tìm nguyên hàm hàm số biết       x3 F  x   2x   3 A x3 x3 19 F  x   2x  x  F  x   2x   F  x   2x   3 C 3 B D Câu 40: Cho hai hàm số f (x), g(x) hàm số liên tục,có F(x), G(x) nguyên hàm f (x), g(x) Xét mệnh đề sau: (I): F(x)  G(x) nguyên hàm f (x)  g(x) k.F  x  kf  x   k �R  (II): nguyên hàm (III): F(x).G(x) nguyên hàm f (x).g(x) Mệnh đề mệnh đề ? A I B I II C I,II,III y (x  1) : Câu 41: Hàm nguyên hàm hàm số x  2x 2 A x  B x  C x  Câu 42: Tìm cơng thức sai: D II x 1 D x  Trang Phần Tích Phân-Giải tích 12 e dx  e  C � cos xdx  sin x  C C � x x A B D a x dx  � ax  C   a �1 ln a sin xdx  cos x  C � Câu 43: Trong mệnh đề sau, mệnh đề sai? sin x (I) : � sin x dx  C 4x  (II) : �2 dx  ln  x  x    C x x3 6x (III) : � 3x  x  3 x  dx  xC ln A (III) B (I) C Cả sai D (II) y F(x) x  F(2)  F(3) Câu 44: Nếu nguyên hàm hàm số ln A B C ln D ln  Câu 45: Công thức nguyên hàm sau không đúng? x 1 dx  x dx   ln x  C � �    C   �1 A x B ax dx  C   a �1  tan x  C � ln a C D cos x Câu 46: Trong khẳng định sau, khẳng định sai? F  x    tan x f  x    tan x A nguyên hàm hàm số a x dx  � B Nêu F(x) nguyên hàm hàm số f(x) nguyên hàm f(x) có dạng (C số) u ' x  dx  lg u  x   C � u  x C F  x    cos x f  x   sin x D nguyên hàm Câu 47: Trong mệnh đề sau, mệnh đề sai: x4 x2 x  x dx   C e 2x dx  e x  C   � � A B dx F x  C  ln � x x sin xdx  cos x  C C � D Câu 48: Trong khẳng định sau, khăng định sai? f1  x  dx  � f  x  dx  f1  x   f  x   dx  � � A F x G  x f  x F x  G  x  C nguyên hàm cùa hàm số số B Nếu F x  x f  x  x nguyên hàm C F x  x f  x   2x D nguyên hàm Câu 49: Trong khẳng định sau khẳng định sai? Trang Phần Tích Phân-Giải tích 12 A F  x    sin x f  x   sin 2x nguyên hàm hàm số F x G  x B Nếu nguyên hàm hàm số f(x) h  x   Cx  D (C,D số, C �0 ) u ' x   u  x  C � u  x C f  t  dt  F  t   C f  u  x   dt  F  u  x    C � �  2x f (x)  x Khi đó: Câu 50: Cho hàm số 2x f (x)dx   C � x A  F  x   G  x   dx � có dạng D Nếu 2x f (x)dx   C � x C f (x)dx  2x � B  C x 2x f (x)dx   5lnx  C � D f  x   x  x  1 y  F x Câu 51: Cho hàm số Biết F(x) nguyên hàm f(x); đồ thị hàm số M  1;6  qua điểm Nguyên hàm F(x) A C x F x  x F x   1 4  1 5  B  D x F x  x F x   1 5  1   x3 1 x biết F(1) = Câu 52: Tìm nguyên hàm F(x) x2 1 x2 x2 1 F(x)    F(x)    F(x)    x 2 x 2 x A B C x2 F(x)    x D Câu 53: Một nguyên hàm hàm số f (x)   2x là: 3 (2x  1)  2x (2x  1)  2x  (1  2x)  2x A B C 3 (1  2x)  2x D f (x)  f (x)dx � f (x)  Câu 54: Cho hàm số lẻ liên tục � Khi giá trị tích phân là: A B C D -2 y  f  x Câu 55: Cho hàm số thỏa mãn y '  x y f(-1)=1 f(2) bao nhiêu: A e B e C 2e D e  1 Câu 56: Biết F(x) nguyên hàm hàm số x  F(2)=1 Khi F(3) bao nhiêu: ln A ln  B C D ln Trang Phần Tích Phân-Giải tích 12 Câu 57: Nguyên hàm hàm số  2x  1 1 1 C C B C 4x  D 2x  Câu 58: Nguyên hàm F(x) hàm số f (x)  4x  3x  2x  thỏa mãn F(1)  là: 4 A F(x)  x  x  x  B F(x)  x  x  x  10 C A  4x  2x  1 C 4 C F(x)  x  x  x  2x D F(x)  x  x  x  2x  10 Câu 59: Trong khẳng định sau khẳng định sai? dx  ln x  C 0dx  C � A � ( C số) B x ( C số) 1 x  dx  x C dx  x  C C �  1 C ( C số) D � ( số) f  x  x  2x  x 1 Câu 60: Một nguyên hàm x2 x2  3x  ln x   3x-6 ln x  A B f (x)dx  x � f (x )dx  ? Vậy � Câu 61: Cho x2  3x+6 ln x  C x2  3x+6 ln x  D x C x5 x3  C A B x  x  C Câu 62: Hãy xác định hàm số f(x) từ đẳng thức: A 2x B x x xC C x  xy  C  � f (y)dy C 2x + e  ev  C  � f (v)dv D Khơng tính D Khơng tính u Câu 63: Hãy xác định hàm số f từ đẳng thức sau: v u A e B e v C e  C  � f (y)dy y Câu 64: Hãy xác định hàm số f từ đẳng thức sau: x    A y B y C y Câu 65: Hãy xác định hàm số f từ đẳng thức: A 2cosucosv B -cosucosv u D e D Một kết khác sin u.cos v  C  � f (u)du C cosu + cosv D cosucosv x  3x  3x  f (x)  (x  1) Câu 66: Tìm nguyên hàm hàm số với F(0) = là: 2 x x x x x x x 1 x 1 x 1 A B C D Một kết khác � � F � � Câu 67: Tìm nguyên hàm của: y  sin x.sin 7x với �2 � là: sin 6x sin 8x  16 A 12 B  sin 6x sin 8x  12 16 sin 6x sin 8x  16 C 12 sin 6x sin 8x � � �  16 � � D � 12 Trang Phần Tích Phân-Giải tích 12 F(x)  ln(x  2mx  4) vaø f (x)  Câu 68: Cho hai hàm số nguyên hàm f(x) 3  A B dx 2 � Câu 69: sin x.cos x bằng: A tan 2x  C B -4 cot 2x  C 2x  x  3x  Định m để F(x) 2 C D C cot 2x  C  D cot 2x  C  sin 2x  cos2x  dx bằng: Câu 70: �  sin 2x  cos2x  A C x  sin 2x  C C 2x cos dx � Câu 71: bằng: 2x 2x cos C cos C 3 A B �1 �  cos2x  sin 2x � C � � B � x  cos4x  C D x 4x x 4x  sin C  cos C 3 C D y F x cos x F    Khi đó, ta có F  x  là: Câu 72: Cho nguyên hàm hàm số A  tan x B  tan x  C tan x  D tan x  F(x)  ln sin x  3cos x Câu 73: Hàm số nguyên hàm hàm số hàm số sau đây: cos x  3sin x f (x)  sin x  3cos x A B f (x)  cos x  3sin x C f (x)   cos x  3sin x sin x  3cos x D f (x)  sin x  3cos x cos x  3sin x (1  sin x) dx Câu 74: Tìm nguyên hàm: � x  cos x  sin 2x  C x  cos x  sin 2x  C 4 A ; B ; x  cos 2x  sin 2x  C x  cos x  sin 2x  C 4 C ; D ; 4m f (x)   sin x  Câu 75: Cho Tìm m để nguyên hàm F(x) f(x) thỏa mãn F(0) = � �  F � � �4 � 3 m m m m 4 A B C D f  x   sin 2x Câu 76: Cho hàm Khi đó: 1� 1� � � f  x  dx  � 3x  sin 4x  sin 8x � C f  x  dx  � 3x  cos 4x  sin 8x � C � � 8� 8� � � A B Trang 10 Phần Tích Phân-Giải tích 12 (2x  x A � )dx (x B �  2x)dx (2x  x C � )dx (x D �  2x)dx Câu 54: Diện tích hình phẳng giới hạn y   x y=3|x| là: 17 A B C 13 D 3 Câu 55: Tính diện tích hình phẳng giới hạn đường y  x  2x  x y  4x 71 53 A B C 24 D Câu 56: Vận tốc vật chuyển động giây thứ đến giây thứ 10 là: A 36m B 252m v  t   3t   m / s  Quãng đường vật từ C 1200m D 966m x 1 f (x)  x Diện tích giới hạn (H), trục hoành hai Câu 57: Gọi (H) đồ thị hàm số đường thẳng có phương trình x=1, x=2 đơn vị diện tích? A e  B  ln C e  D e  Câu 58: Tính diện tích hình phẳng giới hạn đồ thị hàm số y   x  3x  3x  tiếp tuyến đồ thị giao điểm đồ thị trục tung 27 23 S S S S 4 A B C D Câu 59: Diện tích hình phẳng giới hạn đồ thị có phương trình x - 2x + y = 0; x + y = là: A B 11/2 C 9/2 D 7/2 y x là: Câu 60: Diện tích hình phẳng giới hạn đường y  x 16 A B C D 12  q  : y  x  2x Câu 61: Diện tích hình phẳng giới hạn hai parabol (P): y  x đơn vị diện tích? 1 A B C D 2 Câu 62: Diện tích hình phẳng giới hạn hai parabol y  x  2x; y   x  4x giá trị sau ? A 12 (đvdt) B 27 (đvdt) C (đvdt) D (đvdt) Câu 63: Diện tích hình phẳng giới hạn hai đường y = x, y = x + sin x hai đường thẳng x = 0, x =  là:   1 A S = (đvdt) B S = (đvdt) C S = (đvdt) D S =  (đvdt) Trang 66 Phần Tích Phân-Giải tích 12 Câu 64: Với giá trị m > diện tích hình phẳng giới hạn hai đường y = x y = mx đơn vị diện tích ? A m = B m = C m = D m = Câu 65: Cho S diện tích hình phẳng giới hạn đồ thị hàm số y  x  6x  9x trục Ox Số nguyên lớn không vượt S là: A 10 B C 27 D Câu 66: Tìm d để diện tích hình phẳng giới hạn đường cong A e B e C 2e y x , Ox, x=1, x=d (d>1) 2: D e+1 x Câu 67: Cho hình phẳng giới hạn đường y  xe ; y  0; x  0; x  Thể tích khối tròn xoay sinh hình phẳng quay quanh trục hoành 2  e   2  e     e  2   e  2 A B C D  C  : y  x  3x  , hai trục tọa độ Câu 68: Diện tích hình phẳng giới hạn đường cong đường thẳng x  là: A (đvdt) B (đvdt) C (đvdt) D (đvdt) Câu 69: Cho hình phẳng giới hạn đường y   x , Ox, x=0, x=4 quay xung quanh trục Ox Thể tích khối tròn xoay tạo thành bằng: 28 68 28 68 2   2 3 A B C D Câu 70: Diện tích hình phẳng giới hạn y  2y  x  , x + y = là: 11 A Đáp số khác B C D 2 Câu 71: Hình phẳng D giới hạn y = 2x y = 2x + quay D xung quanh trục hồnh thể tích khối tròn xoay tạo thành là: 288 4  A V = (đvtt) B V =   (đvtt) C V = 72  (đvtt) D V = (đvtt)  Câu 72: Các đường cong y = sinx, y = cosx với ≤ x ≤ trục Ox tạo thành hình phẳng Diện tích hình phẳng là: A - B C 2 D 2  Câu 73: Diện tích hình phẳng nằm góc phần tư thứ nhất, giới hạn đường thẳng y  4x đồ thị hàm số y  x Trang 67 Phần Tích Phân-Giải tích 12 A B C D 2 Câu 74: Tính diện tích S hình phẳng giới hạn đường y  4x  x y = 0, ta có 32 23 S  (đvdt) S  (đvdt) S  (đvdt) 23 3 A B C D S  1(đvdt) 2 Câu 75: Tính diện tích S hình phẳng giới hạn đường y  x y   x , ta có S  (đvdt) S  (đvdt) A B C S  8(đvdt) D Đáp số khác x2 x2 y  4 ;y   S hình phẳng giới hạn đường: 4 Câu 76: Tính diện tích S  2  S  2  S  2  S  2  3 3 A B C D Câu 77: Cho hai hàm số y = f(x), y = g(x) có đồ thị (C 1) (C2) liên tục [a;b] cơng thức tính diện tích hình phẳng giới hạn (C1), (C2) hai đường thẳng x = a, x = b là: b S A C b  f (x)  g(x) dx � B a b b a a S� f (x)dx  � g(x)dx Câu 78: Tính diện tích 31 S   ln  18 A  S Câu 79: Cho đồ thị hàm số A C f  x  dx � D 3 f  x  dx  � f  x  dx � S� f (x)  g(x) dx a ;x 1 x 1 23 S  ln  18 D y  x ; y  ln hình phẳng giới hạn đường: 17 S  ln  S  ln  3 18 B C y  f  x Diện tích hình phẳng (phần tơ đậm hình) là: B a b 3 S�  g(x)  f (x) dx D 0 3 3 0 f  x  dx  � f  x  dx � f  x  dx  � f  x  dx �  � � D  �y  tan x; x  0; x  ; y  � � Câu 80: Cho hình phẳng giới hạn bởi: Thể tích vật tròn xoay D quay quanh Ox: � �   �  � 3 3 3� 3 A � B C � � �  � 3� D � Trang 68 Phần Tích Phân-Giải tích 12 P  : y  x  4x   Câu 81: Tính diện tích hình phẳng tạo đường: Parabol A  1;  , B  4;5   P điểm nằm A S B S 11 S y C x ln(x  2) D tiếp tuyến S 13  x trục hoành là: Câu 82: Diện tích hình phẳng giới hạn     2  ln   ln    ln    3 3 A B C D Câu 83: Cho đồ thị hàm số y  f (x) Diện tích hình phẳng (phần gạch hình) là: A f (x)dx  � f (x)dx � f (x)dx  � f (x)dx � 3 f (x)dx  � f (x)dx � f (x)dx � C D 2 Câu 84: Diện tích hình phẳng giới hạn đồ thị: y  x  2x y   x  x có kết là: 3 B 3 C 3 D A 12 B Câu 85: Diện tích hình phẳng giới hạn hai đường thẳng x = 0, x   đồ thị hai hàm số y = cosx, y = sinx là: A  B C D 2 Câu 86: Diện tích hình phẳng giới hạn đường y  x ,trục Ox đường thẳng x  là: A 8 B C 16 16 D Câu 87: Diện tích hình phẳng giới hạn đồ thị hàm số y  x x  trục ox đường thẳng x=1 là: 32 1 2 1 3 3 3 A B C D Câu 88: Diện tích hình phẳng giới hạn đồ thị hàm số y  x  4x  hai tiếp tuyến với đồ thị a hàm số tai A(1;2) B(4;5) có kết dạng b đó: a+b 13 12 D A 12 B C 13 Câu 89: Diện tích hình phẳng giới hạn đường (P): y=2x2, (C): y=  x Ox là:  10  2  A  2 B C 3 D   Trang 69 Phần Tích Phân-Giải tích 12 y=x ; y= x2 27 ; y= x là: Câu 90: Diện tích hình phẳng giới hạn đồ thị hàm số 63 C 27ln2 A 27ln2-3 B D 27ln2+1 y = x 4x Câu 91: Diện tích hình phẳng giới hạn đồ thị hàm số trục hoành hai đường thẳng x=-2, x=-4 40 92 50 C D A 12 B Câu 92: Diện tích hình phẳng giới hạn đường cong y  x y  x bằng: A 4 B C D y  x 1 , y  x  Câu 93: Diện tích hình phẳng giới hạn đồ thị hàm số có kết 22 10 73 35 A B C D 12 Câu 94: Diện tích hình phẳng giới hạn hai đường cong y = x – x y = x – x2 là: 37 33 37 C 12 D 12 A Đáp án khác B Câu 95: Diện tích hình phẳng giới hạn đồ thị hàm số y = x +11x - 6, y = 6x , x  0, x  có kết a dạng b a-b A B -3 C D 59 Câu 96: Diện tích hình phẳng giới hạn đồ thị hàm số y = -x + 4x tiếp tuyến với đồ thị hàm a số biết tiếp tuyến qua M(5/2;6) có kết dạng b a-b 12 A 11 B 14 C D -5 Câu 97: Diện tích hình phẳng giới hạn (C): y= x2+3x2, d1:y = x1 d2:y=x+2 có kết 1 A B C 12 D Câu 98: Diện tích hình phẳng giới hạn đường cong y = x + 1, tiếp tuyến với đường điểm M(2; 5) trục Oy là: A B D C 2 Câu 99: Diện tích hình phẳng giới hạn đồ thị hàm số y  2x  x  trục hoành là: 125 A 24 125 B 34 125 C 14 125 D 44 x2 y  y  4 x bằng: Câu 100: Diện tích hình phẳng giới hạn đường thẳng parabol Trang 70 Phần Tích Phân-Giải tích 12 28 A 25 B 22 26 C D y  x  4x  Câu 101: Diện tích hình phẳng giới hạn đồ thị: y=x+3 có kết là: 55 205 109 126 A B C D Câu 102: Diện tích hình phẳng giới hạn đường cong y  x  sin x y  x , với �x �2 bằng: A 4 B C D Câu 103: Diện tích hình phẳng giới hạn đường (P): y =x - 2x+2 tiếp tuyến bới (P) biết tiếp tuyến qua A(2;-2) là: 64 16 40 A B C D 3 Câu 104: Diện tích hình phẳng giới hạn đồ thị hàm số y = - x + 3x +1 đường thẳng y=3 57 45 27 21 A B C D Câu 105: Cho Parabol y = x tiếp tuyến At A(1 ; 1) có phương trình: y = 2x – Diện tích phần bơi đen hình vẽ là: y -2 -1 A -1 x 1 A B C D Một số khác Câu 106: Coi hàm số y = f(x) có đạo hàm y’ = có đồ thị (C) qua điểm A(1 ; 2) Diện tích giới hạn (C), trục toạ độ đường thẳng x = bao nhiêu? A B C D Không xác định 2 Câu 107: Tính diện tích hình hữu hạn giới hạn đường cong ax  y ; ay  x (a > cho trước) A S a2 B S a2 C S 2 a S a D Câu 108: Diện tích hình phẳng giới hạn đường: y  x y  sin x  x (0 �x �) là: Trang 71 Phần Tích Phân-Giải tích 12   A  B C D Một số khác x y  8x  với tập xác định D = R  [0;  �) có đồ thị (C) Câu 109: Cho hàm số Tính diện tích tam giác cong chắn trục hồnh, (C) đường thẳng x = ln ln ln S S S 10 12 A B C D Một kết khác Câu 110: Xét hình (H) giới hạn đường (C) : y  (x  3) , y  x = Lập phương trình đường thẳng qua điểm A(0 ; 9), chia (H) thành ba phần có diện tích 27x 27x 27x y 9 y 9 y   9 4 A y  13x  ; B ; 27x 27x y 9 y  9 C y  14x  ; y  14x  D ; Câu 111: Để tính diện tích hình phẳng giới hạn đồ thị hàm số y = cosx đoạn [0 ; ], trục hoành (y = 0) Một học sinh trình bày sau:  cos x �0 �x �  �x �2 (I) Ta có: S 2  3 2 0  3 cos x dx  �cos x dx  �  3 2  3 S� cos xdx    �cos x dx  �cos x dx ( cos x)dx _ � cos xdx � S  sin x  sin x 3  2  sin x 3  (IV) S = - + + = Sai phần nào? A Chỉ (III) (IV) B Chỉ (III) C Chỉ (I) (IV) D Chỉ (II) (IV) Câu 112: Tính diện tích hình phẳng giới hạn đồ thị của: y  x  2x , trục Ox đường thẳng x = 0, x = 2 A B C D Một số khác Câu 113: Tính diện tích hình phẳng giới hạn Parabol y   x đường thẳng y = -x - 11 A B C D Một kết khác Câu 114: Tính diện tích hình phẳng giới hạn ba đường: y = sinx, y = cosx x = A 2  B 2  C D Một số khác y x y  3x  x Câu 115: Tính diện tích hình phẳng giới hạn hai parabol: A B C D x  x 1 y x  , tiệm cận xiên, trục tng đường Câu 116: Tính diện tích hình phẳng giới hạn (C) : thẳng x = -1 Trang 72 Phần Tích Phân-Giải tích 12 A ln3 B ln2 C ln5 D Một số khác Câu 117: Tính diện tích hình tròn tâm gốc toạ độ, bán kính R: R 2 A 2R B C R D Một kết khác Câu 118: Tính diện tích hình elip: ab ab A 2ab B C D ab Câu 119: Tính diện tích giới hạn đường cong: 2 (C1 ) : y  f1 (x)  x  1; (C2 ) : y  f (x)  x  2x đường thẳng x = -1 x = 13 A 11 B C D Một đáp số khác yx 2x , tiệm cận xiên (C) đường thẳng x = Câu 120: Tính diện tích giới hạn : (C) : 1, x = 1 A B C D x2 y  (C2 ) Câu 121: Cho ba hàm số sau, xác định với x �0, y   x  (D); y  x (C1 ) Tính (D , (C ) , (C ) diện tích hình phẳng giới hạn ba đường: A B C D Câu 122: Diện tích hình phẳng giới hạn parabol: y  x  2x  tiếp tuyến với parabol điểm M(3; 5) trục tung A B C D Câu 123: Diện tích hình phẳng giới hạn bởi: y = lnx, y = 0, x = e là: A B C D Một kết khác Câu 124: Tính diện tích hình phẳng giới hạn bởi: y = x(x – 1)(x – 2), y = 1 A B C D Câu 125: Cho D miền kín giới hạn đường y  , y = – x y = Tính diện tích miền D 7 A B C D Một đáp số khác Câu 126: Tính diện tích hình phẳng giới hạn đường: y = x + 1, y = cosx y = A B C D 2 Câu 127: Tính diện tích hình phẳng giới hạn đường: (y  x)  x x  A khác B C D Một số C – ĐÁP ÁN 1D, 2D, 3B, 4C, 5D, 6D, 7A, 8C, 9B, 10D, 11D, 12D, 13D, 14A, 15A, 16D, 17B, 18A, 19A, 20C, 21B, 22B, 23B, 24D, 25B, 26A, 27C, 28A, 29C, 30C, 31C, 32A, 33A, 34C, 35A, 36B, 37C, 38A, 39A, 40A, 41A, 42D, 43B, 44A, 45D, 46C, 47D, 48D, 49B, 50B, 51D, 52C, 53C, 54D, 55A, 56D, 57B, 58A, 59C, 60B, 61B, 62D, 63A, 64A, 65D, 66B, 67C, 68B, 69B, 70D, 71A, 72D, 73C, 74B, 75B, 76C, 77D, 78B, 79B, 80C, 81C, 82D, 83A, 84B, 85D, 86B, 87C, 88C, 89C, 90C, 91C, 92B, Trang 73 Phần Tích Phân-Giải tích 12 93A, 94C, 95C, 96C, 97C, 98D, 99A, 100A, 101C, 102B, 103C, 104C, 105A, 106C, 107A, 108B, 109C, 110D, 111A, 112B, 113C, 114D, 115A, 116B, 117C, 118D, 119A, 120B, 121C, 122D, 123A, 124B, 125D, 126D, 127D Trang 74 Phần Tích Phân-Giải tích 12 ỨNG DỤNG TÍNH THỂ TÍCH A – LÝ THUYẾT TĨM TẮT  Gọi B phần vật thể giới hạn hai mặt phẳng vng góc với trục Ox điểm điểm a b S(x) diện tích thiết diện vật thể bị cắt mặt phẳng vng góc với trục Ox điểm có hồnh độ x (a  x  b) Giả sử S(x) liên tục đoạn [a; b] b V� S(x)dx a Thể tích B là:  Thể tích khối tròn xoay: Thể tích khối tròn xoay hình phẳng giới hạn đường: (C): y = f(x), trục hoành, x = a, x = b (a < b) sinh quay quanh trục Ox: b V  � f (x)dx a Chú ý: Thể tích khối tròn xoay sinh hình phẳng giới hạn đường sau quay xung quanh trục Oy: (C): x = g(y), trục tung, y = c, y = d d V  � g (y)dy là: c B – BÀI TẬP Câu 1: Cho hình phẳng giới hạn đường y = 2x – x y = Thì thể tích vật thể tròn xoay sinh hình phẳng quay quanh trục Ox có giá trị bằng? 16 15 5 6 A 15 (đvtt) B 16 (đvtt) C (đvtt) D (đvtt) Câu 2: Thể tích hình khối hình phẳng giới hạn đườn y  x  4, y  2x  4, x  0, x  quay quanh trục Ox bằng: 32 32  A B 6 C 6 D Câu 3: Thể tích vật thể tròn xoay quay hình phẳng giới hạn đường x y  x2 e2 , x  1, x  2, y  quanh trục ox là: 2 A (e  e) B (e  e) C e D e Câu 4: Thể tích vật thể tròn xoay quay hình phẳng giới hạn đường y  , y  0, x  1, x  x quanh trục ox là: A 6 B 4 C 12 D 8  H  giới hạn đường  H  quay quanh Ox tròn xoay sinh hình Câu 5: Cho hình phẳng y  sin x ; x  ; y  x   Thể tích vật thể 2 B 2  A 2 C D Câu 6: Cho hình phẳng giới hạn đường y  x y  x quay xung quanh trục Ox Thể tích khối tròn xoay tạo thành bằng:  A  B C D  Trang 75 Phần Tích Phân-Giải tích 12 Câu 7: Thể tích vật thể tròn xoay quay hình phẳng giới hạn đường y  x , y  0, y   x quanh trục ox là: 7 13 6 A 12 B 6 C D 2 Câu 8: Thể tích vật thể tròn xoang quay hình phẳng giới hạn đồ thị hàm số y = x ; x  y quanh trục ox  4 3  A 10 B C 10 D 10 Câu 9: Thể tích vật thể tròn xoay quay hình phẳng giới hạn đồ thị hàm số y = 8x x = quanh trục ox là: A 12 B 4 C 16 D 8 Câu 10: Thể tích vật thể tròn xoay quay hình phẳng giới hạn đường y   x , y  quanh a trục ox có kết dạng b a+b có kết là: C 31 D 25 A 11 B 17 Câu 11: Thể tích khối tròn xoay tạo nên quay quanh trục Ox hình phẳng giới hạn đường y = (1- x)2, y = 0, x = x = bằng: 8 5 2 A 2 B C D Câu 12: Thể tích khối tròn xoay tạo phép quay quanh trục Ox hình phẳng giới hạn đường y = x2 x = y2 bằng: 10 3 A 10 B C 3 D 10 Câu 13: Thể tích khối tròn xoay tạo thành quay hình phẳng D giới hạn đường y  x  , trục hoành, x  2, x  quanh trục Ox bằng: A �x  1dx B �  x  1 dx 2 C �  y  1 dx 2 D  x  1 dx � 2 Câu 14: Thể tích khối tròn xoay tạo lên hình phẳng (H) giới hạn đường y   x  ; y  trục Ox quay xung quanh Ox A 1 1 1 1 � ( x  1) dx   � dx � ( x  2) dx   � dx B 1 1 1 � ( x  2) dx   � dx � ( x  2) dx 1 C 1 D 1 Câu 15: Thể tích khối tròn xoay sinh quay quanh trục Oy hình phẳng giới hạn đường: y  x  4x  Ox bằng: 16  16 A B 5 C D Câu 16: Thể tích khối tròn xoay quay quanh trục Ox hình phẳng giới hạn đường  (b e3  2) y  x ln x, y  0, x  e có giá trị bằng: a a,b hai số thực đây? A a = 27; b = B a = 24; b = C a = 27; b = D a = 24; b = Câu 17: Thể tích vật thể tròn xoay tạo quay hình phẳng giới hạn đường y = x – 2x, y = 0, x = 0, x = quanh trục hoành Ox có giá trị bằng? Trang 76 Phần Tích Phân-Giải tích 12 8 A 15 (đvtt) 8 15 7 B (đvtt) C (đvtt) D (đvtt)  H  giới hạn đường: y  x ln x, y  0, x  e Tính thể tích khối Câu 18: Cho hình phẳng  H  quay quanh trục Ox tròn xoay tạo thành hình   5e3     5e3     5e3     5e3   VOx  VOx  VOx  VOx  25 27 27 25 A B C D Câu 19: Tính thể tích V khối tròn xoay tạo thành ta cho miền phẳng D giới hạn đường y  e x , y = 0, x = 0, x = quay quanh trục ox Ta có V (e  1)  (đvtt) V 13 15 V e2 (đvtt) V 13 D V   (đvtt) P : y  x2 1  Câu 20: Thể tích vật thể tròn xoay sinh hình phẳng giới hạn parabol trục hoành quay xung quanh trục Ox đơn vị thể tích? 7 5 8 A B C D Đáp án khác Câu 21: Tính thể tích vật thể tròn xoay tạo thành quay hình phẳng (H) giới hạn đường cong y  x y  x quanh trục Ox A V   (đvtt) A V 3 10 B B C C D V 3 Câu 22: Thể tích vật thể tròn xoay sinh hình phẳng giới hạn bới đường y  x , y   x  , y  quay quanh trục Oy, có giá trị kết sau ?  A (đvtt)  B (đvtt) 11  C (đvtt) Câu 23: Cho (H) hình phẳng giới hạn đường cong (L): 32  D 15 (đvtt) y  x ln   x  trục Ox đường , thẳng x  Tính thể tích vật thể tròn xoay tạo cho (H) quay quanh trục Ox     V   ln  1 V   ln   V   ln   V  ln 3 3 A B C D y   x  2x trục Ox quanh Câu 24: Thể tích khối tròn xoay quay hình phẳng (H) giới hạn trục Ox là: 163 16 16 A 15 B C 15 D 15 y  x y  x  quanh trục Thể tích khối tròn xoay quay hình phẳng (H) giới hạn Câu 25: Ox là: 72 D Câu 26: Thể tích khối tròn xoay khơng gian Oxyz giới hạn hai mặt phẳng x  0; x   có thiết diện cắt mặt phẳng vng góc với Ox điểm (x;0;0) đường tròn bán kính sin x là: A 2 B  C D 4 2 Câu 27: Thể tích khối tròn xoay tạo thành cho đường x +(y-1) = quay quanh trục hoành 72 A 138 B 9 C Trang 77 Phần Tích Phân-Giải tích 12 2 2 A 6 (đvtt) B 8 (đvtt) C 4 (đvtt) D 2 (đvtt) Câu 28: Thể tích khối tròn xoay tạo thành quay quanh trục hồnh hình phẳng giới hạn x3 y y = x2 đường 436 9 468 81 A 35 (đvtt) B (đvtt) C 35 (đvtt) D 35 (đvtt) Câu 29: Tính thể tích khối tròn xoay tạo quay quanh trục Ox hình phẳng giới hạn 2x  , y  0, x  1  C : y  x 1  A 2 B C 3 D  Câu 30: Thể tích khối tròn xoay tạo nên quay quanh trục Ox hình phẳng giới hạn đường y  (1  x ), y  0, x  x  bằng: 8 A B 2 2 C 5 D x y2  1 Câu 31: Thể tích khối tròn xoay cho Elip b quay quanh trục Ox, có kết bằng: 2 b b A B 2b C 4b D Câu 32: Thể tích khối tròn xoay giơi han đường y  2x  x ; y  quay quanh trục Ox là: 18 16 12 V  V  V  V  15 15 15 15 A B C D  y  tan x; x  0; x  ; y  Câu 33: Cho hình phẳng D giới hạn bởi: gọi S diện tích hình phẳng giới hạn D gọi V thể tích vật tròn xoay D quay quanh ox Chọn mệnh đề   V  (  ) V  (  ) 3 A S = ln2, B S = ln2;   V  (  ) V  (  ) 3 C S = ln3; D S = ln3; �y  � y  x  x2 Câu 34: (H) giới hạn đường: � Tính thể tích vật tròn xoay quay (H) quanh Ox 4 16  A B 15 C D 30 Câu 35: Thể tích vật giới hạn miền hình phẳng tạo đường y  x y  quay quanh trục Ox là: 64 152 128 256 A B C D Câu 36: Thể tích khối tròn xoay cho hình phẳng giới hạn đường  y  sin x  cos x  , y  0, x  0, x  12 quay quanh trục hoành Ox  A 16 3 B 32  C 24  D 32 Trang 78 Phần Tích Phân-Giải tích 12 Câu 37: Tính thể tích vật thể tròn xoay sinh quay (H) quanh trục Ox, biết (H) hình phẳng giới e tan x  y x cos x hạn (C): , trục Ox, trục Oy đường thẳng  23  2 (e  1) (e  1) 3 A B (e  1) C (e  1) D Câu 38: Thể tích khối tròn xoay tạo nên quay hình H quanh trục Ox, với H   y  x ln x; y  0; x  1; x  e bằng: 3 (5e  3) (e  1) (e3  3) (e3  1) 27 27 A B C D Câu 39: Cho hình phẳng (H) giới hạn đường thẳng y  x ; trục hoành đường thẳng x  m, m  Thể tích khối tròn xoay tạo quay (H) quanh trục hoành 9 (đvtt) Giá trị tham số m là: 3 A B C D 3 V 2 2 2 y  z  a (đvtt) Tính Câu 40: Thể tích vật thể giới hạn mặt trụ: x  z  a giá trị a? 1 D C A B Câu 41: Thể tích khối tròn xoay hình phẳng (H) giới hạn đường y  sin x ; y  ; x  0; x   quay xung quanh Ox là: 2 A 2 2 22 B C D f  x g x  a; b thỏa mãn f  x   g  x   với Câu 42: Cho hàm số liên tục x � a; b  Gọi V thể tích khối tròn xoay sinh quay quanh Ox hình phẳng giới hạn đồ thị  C  : y  f  x  ;  C ' : y  g  x  ; đường thẳng x  a ; x  b V tính công thức sau ? �b � V  �� f  x  g x � dx � � � � �a A b B b C V� f  x   g  x  dx a � V  � f (x)  g (x) � dx � � a b D V  � f  x  g x � � � �dx a Câu 43: Cho hình phẳng (S) giới hạn Ox y   x Thể tích khối tròn xoay quay (S) quanh Ox     A B C D 3 Câu 44: Cho hình phẳng giới hạn đường y  x  , y  , x  x  quay quanh trục Ox Thể tích khối tròn xoay tạo thành   23 13 A B C 14 D  P  y  x  4x+4,y=0,x=0,x=3 Câu 45: Cho (H) hình phẳng giới hạn Thể tích V quay (H) quanh trục Ox Trang 79 Phần Tích Phân-Giải tích 12 33 33 A 33 B C D 33 Câu 46: Cho hình phẳng (S) giới hạn Ox, Oy, y = 3x + Thể tích khối tròn xoay quay (S) quanh Oy là: 8 16    A B 27 C D Câu 47: Tính thể tích vật thể giới hạn mặt sinh quay hình phẳng giới hạn bởi: y  2x  x , y  quay quanh Ox 17 16 14 A 15 B 15 C 15 D Một kết khác Câu 48: Thể tích vật thể giới hạn mặt sinh quay hình phẳng giới hạn đường y  x , 8x  y quay quanh Oy 21 23 24 23 A B C D Câu 49: Tính thể tích sinh quay quanh trục Ox hình phẳng giới hạn trục Ox Parabol (C) : y  ax  x (a  0) a a a a A 10 B 20 C D 30 Câu 50: Tính thể tích khối tròn xoay tạo nên ta quay quanh trục Ox, hình phẳng S giới hạn x đường: y  x.e , x  1, y  (0 �x �1) (e  1) A (e  1) B (e  1) C D Một kết khác x y  1 b Câu 51: Cho hình giới hạn elip (E) : a quay quanh trục Ox Thể tích vật thể tròn xoay là: 2ab 4ab ab A B C D Một kết khác  y  0, y  cos x  sin x , x  , x   Câu 52: Cho D miền giới hạn đường: Tính thể tích khối tròn xoay tạo nên quay miền Được quanh trục Ox 2 5 32 A B C D Một kết khác - Trang 80 ... sau: -f(x) hàm số lượng giác.g(x) hàm số mũ -f(x) hàm số lượng giác.g(x) hàm số logarit -f(x) hàm số lượng giác.g(x) hàm số đa thức -f(x) hàm đa thức.g(x) hàm lôgarit -f(x) hàm mũ.g(x) hàm lôgarit...  x  C nguyên hàm cùa hàm số số B Nếu F x  x f  x  x nguyên hàm C F x  x f  x   2x D nguyên hàm Câu 49: Trong khẳng định sau khẳng định sai? Trang Phần Tích Phân- Giải tích 12 A... bao nhiêu: ln A ln  B C D ln Trang Phần Tích Phân- Giải tích 12 Câu 57: Nguyên hàm hàm số  2x  1 1 1 C C B C 4x  D 2x  Câu 58: Nguyên hàm F(x) hàm số f (x)  4x  3x  2x  thỏa mãn F(1)

Ngày đăng: 02/03/2019, 13:45

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w