1. Trang chủ
  2. » Giáo án - Bài giảng

PP GIẢI DẠNG TOÁN KHI BIẾT HAI TỶ SỐ

15 6,8K 68

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 272,5 KB

Nội dung

Phơng pháp giảI toán tìm hai số khi biết “hai tỷ số”Dạng 1: Tổng hai số không thay đổi Ví dụ 1: Đội tuyển bóng đá mi ni của huyện A tham dự hội khỏe Phù Đổng cấp tỉnh gồm các bạn học si

Trang 1

Phơng pháp giảI toán tìm hai số khi biết “hai tỷ số”

Dạng 1: Tổng hai số không thay đổi

Ví dụ 1: Đội tuyển bóng đá mi ni của huyện A tham dự hội khỏe Phù Đổng cấp

tỉnh gồm các bạn học sinh lớp 4 và lớp 5 Dự định số bạn tham gia đội tuyển bóng đá

đang học lớp 4 chiếm

5

1

của cả đội Nhng do một bạn đang học lớp 4 không tham gia

đợc mà thay bởi một bạn đang học lớp 5, khi đó số bạn đang học lớp 4 tham gia chỉ bằng

10

1

số thành viên của cả đội Tính tổng số thành viên của cả đôi bónh đá mi ni?

Phân tích: Lúc đầu số học sinh lớp 4 tham gia học bằng

5

1

của cả đội nhng thay một bạn học sinh lớp 4 bằng một học sinh lớp 5 thì lúc này số học sinh lớp 4 tham gia bằng

10

1

của cả đội Bởi vì thay một bạn học sinh lớp 4 bằng một học sinh lớp 5 nên tổng số học sinh khi không thay đổi Mà ta thấy số học sinh lớp 4 đợc so sánh với tổng số học sinh nên ta sẽ tìm đợc một học sinh lớp 4 chiếm bao nhiêu so với phần tổng số học sinh của cả độ tuyển Làm đợc nh vậy chúng ta đã giải quyết đợc bài toán

Bài giải

Một học sinh chiếm tổng số phần của cả đội là:

10

1 10

1 5

1

=

− ( cả đội)

Số học sinh tham gia đội tuyển bóng đá là:

1 :

10

1

= 10 (học sinh) Đáp số: 10 học sinh

Nhận xét: Cách giải này ngắn gọn hơn cách giải bằng sơ đồ đoạn thẳng Không phải

lập luận dài dòng mà học sinh hiểu vấn đề bài toán nhờ đối tợng so sánh không thay

đổi (cả đội) lúc đó chúng ta dễ nhận thấy 1 học sinh chiếm bao nhiêu phần so với số học sinh cả đội

Bài toán này khi ra cho học sinh khối 5 chúng ta thay các dự kiện hoặc đổi các

dự kiện đó bằng tỉ số phần trăm (có thể thay giá trị

5

1

= 20% )

Từ ví dụ trên chúng ta hớng dẫn học sinh giải bài toán khó hơn sau đây:

Ví dụ 2: Đội tuyển của trờng A tham gia Hội khoẻ Phù Đổng cấp huyện gồm các bạn

học sinh nam và học sinh nữ Dự định số bạn nữ tham gia đội tuyển chiếm

4 1

số nam

Trang 2

nhng do điều kiện thay bởi một bạn nữ bằng một bạn nam Khi đó số bạn nữ chiếm

5

1

số nam Tính xem đội tuyển của trờng A đi dự hội thao bao nhiêu học sinh?

Phân tích

Vì thay 1 học sinh nữ bằng 1 học sinh nam cho nên tổng số tham gia Hội khoẻ không thay đổi Dự định số bạn nữ tham gia đội tuyển chiếm

4

1

số nam tức là số bạn nữ bằng

5

1

số học sinh cả đội nhng do điều kiện thay bởi một bạn nữ bằng một bạn nam Thì lúc đó số bạn nữ chiếm

5

1

số nam tức là số học sinh nữ chiếm

6

1

số học sinh của cả đội Cho nên ta biểu thị số học sinh nữ dự định lúc đầu là một phần thì số học sinh cả đội là 5 phần nh thế Sau khi thay 1 học sinh nữ bằng 1 học sinh nam khi đó số nữ 1 phần thì số học sinh cả đội 6 phần bằng nhau Từ phân tích trên bài toán trở lại bài ban đầu

Bài giải

Số học sinh nữ so với số học sinh cả đội tuyển là:

5

1

cả đội tuyển Sau khi thay 1 bạn nữ bằng 1 bạn nam thì số học sinh nữ so với số học sinh cả đội tuyển là:

6

1

cả đội tuyển

Một học sinh chiếm số phần học sinh cả đội là:

30

1 6

1 5

1 − = (cả đội tuyển)

Vậy số học sinh đội tuyển của trờng A tham gia Hội khoẻ Phù Đổng là:

1 :

30

1

= 30 (học sinh) Đáp số: 30 học sinh

Ví dụ 3: Đội tuyển trờng em tham gia Hội khỏe Phù Đổng cấp huyện, ban đầu số nữ

bằng

3

2

số nam Sau khi xét theo yêu cầu thay thế một bạn nữ bằng một bạn nam vì thế số nữ lúc này bằng 75% số nam Hỏi đội tuyển trờng em có bao nhiêu bạn? (Đề thi học sinh giỏi Nam Định)

Phân tích

Ban đầu số nữ bằng

3

2

số nam; số nữ là 2 phần thì số nam 3 phần bằng nhau cho nên tổng số phần là 2 + 3 = 5 phần tức là số nữ bằng

5

2

cả đội tuyển Sau khi xét theo yêu cầu thay thế một bạn nữ bằng một bạn nam vì thế số nữ lúc này bằng 75% số nam

Trang 3

(75% =

4

3

) Số học sinh nữ ba phần thì số học sinh nam 4 phần nh thế, số phần biểu thị cho cả đội là 3 + 4 = 7 phần; số học sinh nữ chiếm

7

3

số học sinh cả đội Từ phân tích trên chúng ta giải bài toán này nh sau:

Bài giải

Ta có: 75% =

4 3

Vì ban đầu số nữ bằng

3

2

số nam nên số nữ lúc đầu bằng

5

2

cả đội tuyển

Sau khi thay một bạn nữ bằng một bạn nam thì số nữ bằng

4

3

số nam, tức là số nữ lúc này bằng

7

3

cả đội tuyển

Vậy một bạn chiếm số phần của cả đội tuyển là:

35

1 5

2 7

3 − = (cả đội tuyển)

Đội tuyển trờng em có số bạn là:

1 :

35

1

= 35 (bạn) Đáp số: 35 bạn

Ví dụ 4: Một tủ sách có hai ngăn Số sách ở ngăn dới gấp 3 lần số sách ngăn trên

Nếu chuyển 10 quyển sách ở ngăn trên xuống ngăn dới thì số sách ngăn dới gấp 7 lần ngăn trên Tính số sách mỗi ngăn

Phân tích

Đọc đề bài toán này Bài toán này lúc đầu chỉ cho biết tỉ số của hai ngăn: ngăn trên có số sách gấp 3 lần số sách ngăn dới nh vậy số sách ngăn trên 1 phần thì số sách ngăn dới là 3 phần bằng nhau Ta biết thêm dự kiện nữa đó là khi chuyển 10 quyển từ ngăn trên xuống ngăn dới thì số sách ngăn dới gấp 7 lần số sách ngăn trên Lúc này,

số sách trên là 1 phần thì số sách ngăn dới 7 phần nh thế Vì tổng số sách của hai không thay đổi từ phân tích trên chúng ta sẽ tìm đợc 10 quyển sách chiếm bao nhiêu phần tổng số sách của cả hai ngăn Khi chúng ta hiểu đợc nh trên thì giải quyết đợc yêu cầu bài toán

Bài giải

Coi số sách ngăn trên là một phần thì số sách ngăn dới 3 phần bằng nhau cho nên

số sách ngăn trên bằng

4 1

tổng số sách của cả hai ngăn Sau khi chuyển 10 quyển sách

Trang 4

từ ngăn trên xuống ngăn dới thì số sách ngăn trên bằng

8

1

số sách của cả hai ngăn Vậy 10 quyển sách chiến phần của cả hai ngăn là:

8

1 8

1 4

1 − = (tổng số sách) Tổng số sách của cả hai ngăn là:

10 :

8

1

= 80 (quyển sách)

Số sách của ngăn trên là:

80 ì

4

1

= 20 (quyển sách)

Số sách ngăn dới là:

80 – 20 = 60 (quyển sách) Đáp số: Ngăn trên: 20 quyển Ngăn dới: 60 quyển

Ví dụ 5: Lúc đầu số vịt dới ao nhiều gấp 5 lần số vịt trên bờ Nhng sau khi có 3 con vịt

từ trên bờ nhảy xuống ao bơi lội thì số vịt dới ao nhiều gấp 8 lần số vịt trên bờ Hỏi cả

đàn có bao nhiêu con?

Phân tích

Số vịt dới ao nhiều gấp 5 lần số vịt trên bờ tức là số vịt trên bờ bằng

6

1

số vịt cả

đàn Sau khi có 3 con vịt từ trên bờ nhảy xuống ao thì số vịt trên bờ bằng

9

1

số vịt cả

đàn Hiểu nh trên, bài toán trở về ví dụ ban đầu lúc đó học sinh dễ hiểu đồng thời giải quyết vấn đề một cách nhanh chóng

Bài giải

Lúc đầu số vịt trên bờ bằng:

1 : ( 1 + 5) =

6

1

(số vịt cả đàn) Sau khi 3 con từ trên bờ nhảy xuống ao thì số vịt trên bờ bằng:

1 : (1 + 8) =

9

1

(số vịt cả đàn) Vậy 3 con chiếm số phần vịt của cả đàn là:

6

1

-

9

1

=

18

1

(số vịt cả đàn)

Đàn vịt đó có số con là:

3 :

18

1

= 54 (con) Đáp số: 54 con

Trang 5

Ví dụ 6: Một hình chữ nhật có chiều rộng bằng

5

2

chiều dài Nếu thêm vào chiều rộng

4 m và đồng thời bớt chiều dài 4 m thì lúc đó chiều rộng bằng

3

2

chiều dài Tính diện tích của hình chữ nhật đó (Đề thi giáo viên giỏi huyện Can Lộc)

Phân tích

Bài toán này cũng tơng tự nh các ví dụ trên, chỉ khác ở chỗ tổng của chiều dài và chiều rộng đợc che khuất bởi nửa chu vi Mà khi thêm chiều rộng 4 m và bớt chiều dài

4 m thì tổng của chiều dài và chiều rộng không tức là (nửa chu vi) Phát hiện đợc điều này là mấu chốt của bài toán Chiều rộng bằng

5

2

chiều dài cho nên chiều rộng bằng

7 2

nửa chu vi; thêm chiều rộng 4 m và đồng thời bớt chiều dài 4 m thì chiều rộng bằng

3 2

chiều dài tức là chiều rộng bằng

5

2

nửa chu vi

Bài giải

Nếu thêm chiều rộng 4 m và đồng thời bớt chiều dài 4 m thì nửa chu vi không thay

đổi

Lúc đầu chiều rộng bằng

5

2

chiều dài cho nên chiều rộng bằng

7

2

nửa chu vi

Sau khi thêm chiều rộng, bớt chiều dài thì chiều rộng bằng

3

2

chiều dài tức là chiều rộng bằng

5

2

nửa chu vi

Nh vậy: 4 m ứng với số phần của nửa chu vi là:

35

4 7

2 5

2 − = (nửa chu vi) Nữa chu vi hình chữ nhật đó là:

4 :

35

4

= 35 (m) Chiều rộng hình chữ nhật là:

35

7

2

ì = 10 (m)

Chiều dài của hình chữ nhật là:

35 – 10 = 25 (m) Diện tích của hình chữ nhật đó là:

10 x 25 = 250 (m )² Đáp số: 250 m²

Trang 6

Ví dụ 7: Cuối học kì I lớp 5A có số học sinh giỏi bằng

7

3

số học sinh còn lại của lớp Cuối năm học sinh lớp 5A có thêm 4 học sinh giỏi nên tổng số học sinh giỏi bằng

3 2

số học sinh còn lại của lớp Hỏi lớp 5 A có bao nhiêu học sinh?

Phần tích

Số học sinh giỏi của lớp 5A cuối học kì I bằng

7

3

số học sinh còn lại nh vậy cả lớp có 10 phần nên số học sinh giỏi bằng

10

3

số học sinh của cả lớp Cuối năm học sinh lớp 5A có thêm 4 học sinh giỏi nên tổng số học sinh giỏi bằng

3

2

số học sinh còn lại, nên số học sinh giỏi bằng

5

2

số học sinh cả lớp

Vì tổng số học sinh không thay đổi cho nên coi đơn vị so sánh đó là học tỉ số của học sinh của cả lớp để so sánh

Bài giải

Vì số học sinh số học sinh giỏi bằng

7

3

số học sinh còn lại của lớp nên số học sinh giỏi bằng

10

3

số học sinh của cả lớp Có thêm 4 học sinh giỏi nên tổng số học sinh giỏi bằng

3

2

số học sinh còn lại của lớp cho nên học sinh bằng

5

2

số học sinh cả lớp

Mà số học sinh của cả lớp không thay đổi nên phân số biểu thị 4 học sinh là:

10

1 10

3 5

2

=

− (số học sinh cả lớp) Vậy tổng số học sinh lớp 5 A là:

4 :

10

1

= 40 (học sinh) Đáp số: 40 học sinh

Tóm lại: Từ các ví dụ trên cùng một dạng mà cách giải thông thờng giáo viên hớng

dẫn học sinh giải bằng sơ đồ đoạn thẳng nhng hớng dẫn giải bằng sơ đồ thì gặp khó khăn đó là phải thay đổi các phần biểu thị theo từng điều kiện của bài toán, theo từng giai đoạn của bài toán, quá trình này củng phải lập luận, diễn giải hộ trợ thêm cho sơ

đồ, chứ sơ đồ không thể diễn tả nổi lời bài toán cho nên học sinh khó hiểu Chính vì thế chúng ta chỉ sử dùng sơ đồ nhằm giúp học sinh dễ dàng nhìn thấy các mối liên hệ trong bài toán Tuy nhiên, đối với học sinh khá, giỏi không cần thiết vẽ sơ đồ minh họa mà cho các em làm quen với lối t duy, suy luận lôgíc

Và cũng qua các toán trên, chúng ta nhận thấy tổng của hai số không thay đổi Bởi lẽ, khi thêm vào số này một lợng nào đó và đồng thời bớt đi ở số kia cũng một

Trang 7

l-ợng; hay chuyển từ số này sang số kia một lợng nh nhau Nh vậy thì tổng của chúng không thay đổi Cho nên khi giải đa một trong hai số đó so sánh tỉ số của một số với tổng tỉ số của hai số rồi tìm lợng thêm vào bớt đi, hoặc lợng chuyển lên, chuyển xuống thêm vào chiếm bao nhiêu phần so với tổng tỉ số của hai số

Với dạng tổng không thay đổi toán tắt cách giải nh sau:

Dạng 1: Tổng không thay đổi

Cách giải

- Tìm tổng tỉ số của hai số A và B (xác định đại lợng không đổi)

- Đa về cùng một đơn vị so sánh

- Ban đầu so sánh tỉ số của A với tổng tỉ số của A và B

- Sau khi bớt một lợng ở A và thêm vào ở B thì tổng không thay đổi nhng tổng tỉ

số của A và B thay đổi

- So sánh tỉ số của A với tổng tỉ số của A và B sau khi thay đổi

- Tìm lợng bớt chiếm bao nhiêu của tổng hai tỉ số A và B

- Tính tổng của hai số hoặc từng số

Dạng 2: Tổng hai số thay đổi

Ví vụ 8: Một giá sách gồm hai ngăn: Số sách ngăn dới bằng

5

6

số sách ngăn trên Nếu xếp 15 quyển sách mới mua vào ngăn trên thì lúc đó số sách ở ngăn dới bằng

11

12

số sách ngăn trên Hỏi lúc đầu ở mỗi ngăn có bao nhiêu quyển sách?

(Đề thi học sinh giỏi Hà Nội)

Phân tích

Ta nhận thấy: Số sách ngăn dới không thay đổi sau khi thêm 15 quyển vào ngăn trên, cho nên chọn tỉ số sánh là ngăn dới

Số sách ngăn dới bằng

5

6

số sách ngăn trên ta hiểu số sách ngăn trên bằng

6

5

số sách ở ngăn dới, sau khi thêm 15 quyển vào ngăn trên thì số sách ở ngăn dới bằng

11 12

số sách ngăn trên ta hiểu số sách ngăn trên bằng

12

11

số sách ở ngăn dới Tìm đợc 15 quyển chiếm bao nhiêu phần số sách ngăn dới

Bài giải

Số sách ngăn dới bằng

5

6

số sách ngăn trên, nên ta nói: số sách ngăn trên bằng

6 5

số sách ở ngăn dới Sau khi xếp thêm 15 quyển vào ngăn trên thì số sách ngăn dới bằng

11

12

số sách ngăn trên, ta có thể nói: số sách ngăn trên bằng

12

11

số sách ở ngăn d-ới

Trang 8

Số sách ngăn dới không thay đổi, nên phân số biểu thị 15 quyển sách đợc thêm là:

12

1 6

5 12

11

=

− (số sách ngăn dới)

Do đó, số sách ngăn dới là:

15 :

12

1

= 180 (quyển)

Số sách lúc đầu ở ngăn trên là:

180

6

5

ì = 150 (quyển) Đáp số: Ngăn trên: 150 quyển

Ngăn dới: 180 quyển

Ví dụ 9: ở nhà có số gà mái nhiều gấp 6 lần số gà trống Sau đó mua thêm 5 con gà

trống nữa nên bây giờ số gà trống bằng

4

1

số gà mái Hỏi lúc đầu có bao nhiêu con gà mái, gà trống?

Phân tích

Số gà mái không thay đổi nên ta có thể chọn số gà mái làm đơn vị để so sánh rồi tính số gà trống Gà mái nhiều gấp 6 lần gà trống cho nên gà trống bằng

6

1

số gà mái sau khi thêm 5 con gà trống thì số gà trống bằng

4

1

số gà mái Nh vậy chỉ tìm xem 5 con gà trống chiếm bao nhiêu phần của tổng số gà mái

Bài giải

Số gà trống lúc đầu bằng

6

1

số gà mái.Số gà trống lúc sau bằng

4

1

số gà mái

Vậy 5 con gà trống chiếm số phần gà mái là:

12

1 6

1 4

1

=

− ( số gà mái)

Nh vậy số gà mái là: 5 :

12

1

= 60 (con)

Số gà trống là: 60

6

1

ì = 10 (con) Đáp số: Gà mái: 60 con

Gà trống: 10 con

Ví dụ 10: Một cửa hàng nhập về một số xe máy Ngời bán hàng lấy ra trng bày để

bán

8

1

số xe nhập về, số xe còn lại bỏ trong kho Sau khi bán 3 chiếc xe ở quầy trng bày thì ngời chủ quầy nhận thấy số xe ở trong kho nhiều gấp 10 lần số xe còn lại ở quầy trng bày xe Hỏi cửa hàng lúc đầu nhập về bao nhiêu chiếc xe máy?

Phân tích

Trang 9

Đọc bài toán ta thấy số xe trong kho không thay đổi lấy số xe trong kho làm

đơn vị so sánh Số xe trng bày để bán

8

1

số xe đó; số xe còn lại bỏ trong kho là

8

7

số

xe, số xe trng bày để bán bằng

7

1

số xe bỏ trong kho Sau khi bán 3 chiếc xe ở quầy

tr-ng bày thì số xe ở trotr-ng kho nhiều gấp 10 lần số xe còn lại ở quầy trtr-ng bày xe, số xe trng bày lúc này chỉ bằng

10

1

số xe máy trong kho

Chúng ta giải bài toán này nh sau:

Bài giải

Lúc cha bán đi xe nào thì số xe máy trng bày ở quầy hàng bằng

7

1

số xe bỏ trong kho Sau khi bán 3 chiếc xe ở quầy trng bày thì số xe còn lại ở quầy trng bày bằng

10

1

số xe máy cất trong kho

Ta thấy: Số xe trong kho không thay đổi nên phân số biểu thị 3 chiếc xe là:

70

3 10

1 7

1 − = (số xe trong kho)

Số xe máy trong kho là:

3 :

70

3

= 70 (chiếc)

Số xe máy đợc đa ra trng bày và bán ở quầy là:

70

7

1

ì = 10 (chiếc) Tổng số xe máy nhập về là:

70 + 10 = 80 (chiếc) Đáp số: 80 chiếc

Ví dụ 11: Để chuẩn bị tham gia Hội khỏe Phù Đổng cấp tỉnh, huyện em đã thành lập

đội tuyển tham dự trong đó số nữ bằng

3

2

số nam Sau khi đội đợc bổ sung 20 nữ và

15 nam nên lúc này số nữ bằng

5

4

số nam Tính xem đội tuyển của huyện tham gia Hội khỏe Phù đổng cấp tỉnh có tất cả bao nhiêu bận động viên tham gia?

Phân tích

Theo bài toán, lúc đầu số nữ bằng

3

2

số nam, ta có thể nói số nam bằng

2

3

số nữ Lúc đầu số nữ tăng 20 bạn, số nam tăng 15 bạn thì số nữ bằng

5

4

số nam Giả sử sau khi tăng, muốn số nữ vẫn bằng

3

2

số nam hoặc số nam bằng

2 3

số nữ thì số nam phải

Trang 10

bổ sung thêm 20

2

3

ì = 30 (bạn) Nếu bổ sung 30 nam mà chỉ bổ sung 20 nữ thì hiệu

số nam lúc sau và lúc đầu là: 30 – 15 = 15 (bạn)

Chúng ta hiểu lại bài toán nh sau: Nếu bổ sung 15 nam và 20 nữ thì số nam bằng

4

5

số nữ; khi bổ sung 30 nam và 20 nữ thì số nam bằng

2

3

số nữ Từ chỗ hiểu bài toán nh trên tóm tắt cách giải sau:

Bài giải

Theo bài ra ta có: số nam bằng

2

3

số nữ; sau khi tăng thêm 20 nữ và 15 nam mà

để số nam vẫn bằng

2

3

số nữ thì số nam phải đợc bổ sung thêm:

20

2

3

ì = 30 (bạn)

Hiệu số nam bổ sung thêm là:

30 – 15 = 15 (bạn) Nếu bổ sung 15 bạn nam và 20 bạn nữ thì số nam bằng

4

5

số nữ; nếu bổ sung 30 nam

và 20 nữ thì số nam bằng

2

3

số nữ

Nh vậy số nữ vẫn chỉ tăng thêm 20 bạn nên phân số biểu thị 15 bạn là:

4

1 4

5 2

3 − = (số nữ lúc sau)

Số nữ sau khi thêm là:

15 :

4

1

= 60 (bạn)

Số nam sau khi thêm là:

60

4

5

ì = 75 (bạn) Tổng số vận động viên tham gia Hội khỏe Phù Đổng cấp tỉnh là:

60 + 75 = 135 (bạn) Đáp số: 135 bạn

Ví dụ 12: Tủ sách của lớp 5 A có 7 ngăn, số sách trong các ngăn nh nhau Tủ sách của

lớp 5B có 5 ngăn, số sách trong mỗi ngăn gấp 2 lần số sách trong mỗi ngăn của tủ 5A Biết rằng nếu bớt đi ở mỗi ngăn của tủ sách lớp 5A 3 quyển và bớt đi tủ sách của lớp 5B 12 quyển thì số sách còn lại của hai tủ bằng nhau Tính xem mỗi tủ có bao nhiêu quyển sách ( Đề thi học sinh giỏi Hà Tây).

Phân tích

Tủ sách của lớp 5A có 7 ngăn, tủ sách của lớp 5B có 5 ngăn nhng số sách trong mỗi ngăn của lớp 5B gấp 2 lần số sách trong tủ của lớp 5A cho nên ta coi tủ sách của lớp

Ngày đăng: 03/07/2014, 15:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w