1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khóa luận tốt nghiệp Vật lý: Ứng dụng phép biến đổi Wavelet trong xử lý nhiễu tín hiệu điện tim

78 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Ứng Dụng Phép Biến Đổi Wavelet Trong Xử Lý Nhiễu Tín Hiệu Điện Tim
Tác giả Nguyễn Trung Hiếu
Người hướng dẫn ThS. Trần Đặng Bao Ân
Trường học Trường Đại Học Sư Phạm Thành Phố Hồ Chí Minh
Chuyên ngành Vật Lý Học
Thể loại luận văn tốt nghiệp
Năm xuất bản 2015
Thành phố Tp. Hồ Chí Minh
Định dạng
Số trang 78
Dung lượng 57,29 MB

Nội dung

DANH MUC MOT SO CHU VIET TAT WHO World Health Organization Tổ chức y tế thế giới ECG Electrocardiography Điện tâm đồ LMS Least Mean Square Tôi thiểu hóa trung bình của bình phương FT Fou

Trang 1

BỘ GIÁO DỤC VÀ ĐÀO TẠOTRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHÓ HÒ CHÍ MINH

KHOA VẬT LÝ

NGUYEN TRUNG HIỂU

LUAN VAN TOT NGHIEP DAI HOC

Tp HO CHI MINH - NAM 2015

Trang 2

BO GIAO DUC VA DAO TAOTRƯỜNG DAI HỌC SU PHAM THÀNH PHO HO CHÍ MINH

KHOA VAT LY

NGUYEN TRUNG HIEU

UNG DUNG PHEP BIEN DOI WAVELET

TRONG XU LY NHIEU TIN HIEU DIEN TIM

Ngành: VAT LY HOC

Mã số: 105

Giảng viên hướng dẫn:

ThS TRAN DANG BAO ÂN

Tp HO CHÍ MINH — NAM 2015

Trang 3

LOI CAM ON

Trong quá trình thực hiện và hoàn thành luận văn này, ngoài những nỗ lực của banthân mình, tôi đã nhận được sự quan tâm, giúp đỡ, động viên từ ba mẹ, thầy cô và

bạn bè.

Tôi xin cảm ơn quý thầy cô trong khoa Vật lý, Trường Đại học Sư phạm Thành phố

Hồ Chí Minh đã tạo điều kiện và đưa ra những ý kiến đóng góp quý báu để tôi cóthé hoàn thành luận văn này

Tôi xin gửi lời cảm ơn chân thành và sâu sắc nhất đến ThS Trần Đặng Bao Ân —giảng viên hướng dẫn luận văn này — thầy đã tận tình hướng dẫn, truyền thụ cho tôinhững kiến thức bổ ích, những kinh nghiệm quý báu và tạo mọi điều kiện thuận lợicho tôi phát triển và hoàn thành luận văn

Xin chân thành cảm ơn bà Luu Thị Thúy — Bác sĩ khoa tim mạch bệnh viện Binh

Chánh đã tư vấn và chỉ dẫn cho tôi những vấn đề liên quan đến điện tâm đồ

Ngoài ra, tôi cũng xin cảm ơn bạn be đã ủng hộ, động viên, giúp đỡ và góp ý cho

luận văn tốt nghiệp của tôi

Và cuối cùng, xin cảm ơn gia đình đã tạo điều kiện và hỗ trợ về mặt tinh thần giúp

tôi hoàn thành luận văn này.

Xin chân thành cảm ơn!

Tp Hồ Chí Minh, ngày 22 tháng 2 năm 2015

Sinh viên thực hiện

Nguyễn Trung Hiếu

Trang 4

MỤC LỤC

LOT CẢM ƠN 5c: 222 t2 ng 2t re i

DANH MỤC MOT SO CHU VIET TẮTT - 2-5 +s+Ee£EezEerEerxerxerxees iv

DANH MỤC CAC HÌNH VE ccscccssscsssesssesssesssesssessvessesssesssecssecssesssesssesssesssesseeess V

0807000 |Chương 1 TONG QUAN - 55-5222 21 2 221221211271211211 2711112111121 re 4

1.1 Giới thiệu tông quan -2- 22 2 +E£2E£+EE+EE2EEEEEEEEEEEEEEE2E1271711211 71.11 cre, 4

1.2 Cơ sở lý thuyết tín hiệu điện tỉm ¿2 2 2 £+E++E++EE+EE+EzEerrrrerrsres 5

1.2.1 Cấu trúc giải phẫu và chức năng của tim 2- ¿©s+cx+zxzzserxeee 51.2.2 Chu chuyến tim -2 2 2 ©E£+EE+EE£EEE£EESEEEEEEEEEEEEEEEEE221221 21.221 xe 71.2.3 Cơ sở phát sinh điện thé tế bào -2- 2 + 5++EE+EE+EE£EE+EE2EEeErrxrrsrrs 8

1.2.4 Quá trình hình thành tín hiệu điện tim -. - 55+ S5<**+++sss+++s+ 9

1.2.5 Đặc điểm tín hiệu điện tim -:¿52+vtsvEvxvrrrtrtrrrrrrtrrrrrrrrrrrke 13

1.3.1 Các loại nhiỄU - - xxx SE SE E11 11T TT TT TT TT ru 14

1.3.2 Nhiễu Gauss trắng (White Gaussian Noise) -<<<<<ccc<+ 15Chương 2 CÁC PHƯƠNG PHÁP XỬ LY TÍN HIỆU -2 55¿ 5552 l6

2.1 Phép biến đổi Fourier (FT — Fourier Transform) - - ss+ssszx+zezxzxzsez 16

2.1.1 Phép biến đồi Fourier liên tục ceccecceccesscsssessesssessesseessessesssessessesssessesseeees 162.1.2 Biến đổi Fourier rời rac (DFT — Discrete Fourier Transform) 172.1.3 Biến đổi Fourier nhanh (FFT — Fast Fourier Transform) - 182.1.4 Phép biến déi Fourier thời gian ngắn (STFT — Short Time Fourier

TranSfOrm) ccccccccesssssceccesssscsccessssecccesssseececeesseeccesssseecesessseecesessseeececensaseeeees 19

2.2 Phép biến đổi Wavelet (WT — Wavelet Transform) -: ::++ 21

2.2.1 Điểm nồi bậc so với STET oe eeseeessseecssseessseeessneessneessneessneeesneessneeenneeesees 212.2.2 Một số khái niệm cơ bản :¿-©52¿222+t2Exttsrktrrtrrtrrrrrrrrrrrrved 222.2.3 Phép biến đổi Wavelet liên tục (CWT - Continous Wavelet Transform)

¬ 24

2.2.4 Biến đổi Wavelet rời rac (DWT — Discrete Wavelet Transform) 27

2.2.5 Sự tái tạo Wavelet cccccscccccessssecceseesseeeecesesseececesssseeceeessseeseseessseeeesees 31

Chương 3 PHƯƠNG PHAP THUC HIỆN - 2-52 sccxczEsrxerxerreee 34

3.1 Xử lý nhiễu tín hiệu bằng Wavelet - ¿5c se teckcckeEEeEkerkerkerkerkered 34

Trang 5

3.1.1 Mô hình xử lý nhiễu cơ bản ¿- ¿2 +5 2+E+Ec£E+EeEzEerrxrrererrred 343.1.2 Nguyên tắc khử nhiễu -¿- ¿2+ ©2+2E++EEESEEE2EEESEEerkrrrrrrrrrrked 34

3.2 Phương pháp đặt ngưỡng - - c2 12321 v1 11111 ng rep 35

3.2.1 Lý thuyết ngưỡng -¿- 2-5222 2 2EE2E211212112111212121 111111 te 353.2.2 Quy tắc chọn ngưỡng - 2: +¿©2+++++EE+SEEESEEESEEESEErEEkrrrkrrrrrrred 353.3 Đánh giá chất lượng tín hiệu - ¿2£ ¿©S£+S£E£EE££E£EE£EEEEEerEerkerkerkrred 38

3.3.1 Tỷ lệ tín hiệu trên nhiễu (SNR — Signal to Noise Ratio) 39 3.3.2 Độ lệch bình phương trung bình (MSE — Mean Square Error) 39

3.4 Lưu đồ thuật toán :¿-©++++E2++tt2EEkxtttEktrrtttkrrttrirrrtrrrrrireeriie 4IChương 4 KET QUA - -2222- S5 2S22EE‡EEEEEEEEEEE2EEEE1 2112212121121 cEkcrkee 44

4.1 Chọn Wavelet mẹ tốt nhất ¿- tk svSk+E£EEEE£EEEEEEEEEEEEEeEEkekererkerrerkrree 444.2 Tìm mức phân tách tốt nhất - 2-2 2 2 £+E£+E£+E£+E££E££E£EerEerxerxerxeei 474.3 So sánh hiệu quả khử nhiễu giữa ngưỡng cứng và ngưỡng mềm 49

4.4 Xây dung giao diện xử lý nhiễu tín hiệu điện tim -2- ¿555552 53

4.4.1 Thiết kế giao dit eoeccecceccescssessessessessescsessessecsessessessessessesseesessesseesesseeseess 53

4.4.2 Thực thi ham trong UÏ - 5 5 + 2s 3k3 2 2v 9 ng ng rkp 59

4.4.3 Sử dụng giao diện xử ly nhiễu tín hiệu điện tim . 5 64

KET LUẬN VA HƯỚNG PHAT TRIN -2- 2 se2E++EEeEEerEterxerxerrxee 65

DANH MỤC CONG TRÌNH ĐÃ CÔNG BÓ - 22 cccctecrrrrerrerrree 67

TÀI LIEU THAM KHAO 2-22 ©52+SE££EEE£EEE£EEEEEEEEECEEECEEECEEECrrkrrrrrrred 68

Trang 6

DANH MUC MOT SO CHU VIET TAT

WHO World Health Organization (Tổ chức y tế thế giới)

ECG Electrocardiography (Điện tâm đồ)

LMS Least Mean Square (Tôi thiểu hóa trung bình của bình phương)

FT Fourier Transform (Biến đổi Fourier)

WT Wavelet Transform (Biến đổi Wavelet)

SAN Sinus Atrial Node (Nut xoang nhi)

AVN Atrioventricular Node (Nut nhi that)

EMG Electromyography (Điện cơ đồ)

WGN White Gaussian Noise (Nhiéu Gauss trang)

CFT Continous Fourier Transform (Bién đổi Fourier liên tục)

DCT Discrete Cosin Transform (Bién đôi Cosin rời rạc)

DFT Discrete Fourier Transform (Bién đổi Fourier rời rac)

FFT Fast Fourier Transform (Bién đổi Fourier nhanh)

STFT Short Time Fourier Transform (Biến đổi Fourier thời gian ngắn)

CWT Continous Wavelet Transform (Biến đổi Wavelet liên tục)

DWT Discrete Wavelet Transform (Bién đổi Wavelet rời rac)

SNR Signal to Noise Ratio (Ty lệ tín hiệu trên nhiéu)

MSE Mean Square Error (Trung bình bình phương sai số)

PRD Percentage Root Mean Square Difference (Phần trăm căn bậc hai trungbình bình phương sai số)

Trang 7

DANH MỤC CÁC HÌNH VE

Hình 1.1 Cau tạo tim ngườii - + + ++Sz+E++E2EE2E12E1211211211211211211211 2121 5Hình 1.2 Hệ thống dẫn truyền tim - + 2£ ¿+ £+EE£EE££EE£EEtEEEzEEtrxrrrerrxee 6Hình 1.3 Một chu chuyên tim - 2-2 2 2 £SE2EE+EE+EE2EE2EE2EEEEEEEEEErrkrrkerreei 7

Hình 1.4 Sự khử cực và tai CỰC - + 111211111 11118 1111821 1118011118111 ket 9 Hình 1.5 Khử cực ở tâm nhĩ và sự hình thành sóng P - -«++s+++ 10

Hình 1.6 Sự khử cực ở vách liên thất và hình thành sóng Q 10Hình 1.7 Sự khử cực ở tâm thất và hình thành SONG R,S cc.eeeieee 11

Hình 1.8 Sự tái cực ở tâm that va hình thành loi 12

Hình 1.9 Hàm phân bố Gauss - 2-52 EEE+EE+EE+EE£EEEEEEEE+ErErrerrerree 14

Hình 2.1 Phép biến đổi FOurier - ¿2 + 5+2S++Ex+£E+2E++EEzE++Exerxezrxerxeree 15

Hình 2.2 Phép biến đổi Fourier của tín hiệu có chu kỳ -. -5s 16

Hình 2.3 Tín hiệu liên tục và tín hiệu rời rạc - - - - 5552 ++Ssssssssssseeeesss 17

Hình 2.4 Phép biến đổi Fourier thời gian ngắn - 2 2 s2 s+cs+£++xszes 18

Hình 2.5 Phép biến đổi Wavelet 2-22 2++2+++EEE2EE22E2EEEEErrrkrrrrrrred 20

Hình 2.6 STFT và Wavelet ccccccscsssessesssessesssessessesssessesssessessesssessessssesessessseeseess 21

Hình 2.7 Sóng Sin và Wavelet đb ]Ú - - Sc 13c 1S 39 re 21 Hình 2.8 Sự co dãn sóng S1n c1 19919 1191 ng ng ng ng kg 24

Hình 2.9 Dịch chuyên Wavelet cccccccccsessessessessessessecsecsessessessesscsucssssssessseseesees 24

Hình 2.10 Bước 1 và 2 của CWT ¿ 2¿©2222+22x2E2EEE2E2E122121.2EeEkcrkrrree 25

20015082 50 25 Hình 2.12 Bước 4 của CWT, - 11H HH1 ng ven 25

Hình 2.13 Mặt phăng thời gian — tần số với biến đổi Wavelet -.- 26Hình 2.14 Lọc một tầng "—— 27Hình 2.15 Quá trình giảm mẫu 2 ¿2 2S ©E£E£+E£EE£EEEeEE+EErEerxrrerreree 28Hình 2.16 Tính Wavelet một sóng Sin có nhiễu tần số cao - 28

Hình 2.17 Cây Wavelet : 6c se 2k EE2122122121127111121111111 211111 cre 29

Hình 2.18 Cây Wavelet phân tách tín hiệu - 55255 * + sseesseerseess 29

Hình 2.19 Quá trình tái tong hợp tín hiệu theo Wavelet 5-5-5252 30

Trang 8

Hình 2.20 Quá trình tăng mẫu - ¿2 52 +E+E£EE+E£EEE+EEEEEEEEEEErEererkrrrrerres 30

Hình 2.21 Bộ lọc xây dựng lạI - - 11v 1 9 ng ng rệt 30

Hình 2.22 Xây dựng lại xấp Xi AI -2¿+22+z22EEEEEEECEEEErErkrrrrkrrree 31 Hình 2.23 Xây dựng lại chi tiết D1 o.c cecceccecceccescsesessessessessessessessesesesessesesvess 31 Hình 2.24 Tai tạo lại tín hiệu từ phân tách nhiều mức - - -s+s=sszxzsz+2 32 Hình 2.25 Biến đổi Wavelet nhiều mức :¿©+22+++cvxsrxvsrrxrsrrvee 32 Hình 3.1 Ngưỡng cứng và ngưỡng mềm 2-2-2 ©+++++x++zx++zxzzxez 34

Hình 3.2 a) Lưu đồ thuật toán ban đầu; b) Lưu đồ thuật toán cải tiến 39

Hình 4.1 Đồ thị thể hiện mối liên hệ giữa SVR và MSE với 54 hàm Wavelet 42

Hình 4.2 Đồ thị thé hiện mối liên hệ giữa PRD với 54 hàm Wavelet 42

Hình 4.3 Đồ thị biéu diễn sự phụ thuộc của SNR và MSE vào số mức phân tách "—— 43

Hình 4.4 Đồ thị biểu diễn sự phụ thuộc của PRD vào số mức phân tách 43

Hình 4.5 Khử nhiễu tín hiệu điện tim với mức phân tách 2 và 4 44

Hình 4.6 Khử nhiễu tín hiệu điện tim với mức phân tách 6 và 8 44

Hình 4.7 Đồ thị đánh giá hiệu quả khử nhiễu của ngưỡng cứng và ngưỡng mềm Hình 4.8 Tín hiệu nhiễu được phân tách 2 mứỨc - «+ «+ ++k+seeesseess 46 Hình 4.9 Khử nhiễu tín hiệu điện tim với nhiễu Gauss có SNR = 5dB, 10dB 46

Hình 4.10 Khử nhiễu tín hiệu điện tim với nhiễu Gauss có SNR = 15dB, 18dB

¬— 47

Hình 4.11 Khử nhiễu tín hiệu điện tim với nhiễu Gauss có SNR = 10đB 47

l0: I€/lic9086/0009) 2n 48

Hình 4.13 Thiết kế giao diện và hộp thoại Inspector -. -¿s s22 50 Hình 4.14 Giao điện sau khi thiết lập các thuộc tính - -«+<<<<<<+ 53 Hình 4.15 Ham Callback cho nút Load SIgnal - -+-+++s+++£+s++exsx2 54 Hình 4.16 Ham Callback cho nút Add to SignalL - - 5s s+ss+x+x+erees+ 55 Hình 4.17 Ham Callback cho hộp thoại Wavelet Function - - 56

Hình 4.18 Ham Callback cho hộp thoại Level Decomposition - 57 Hình 4.19 Ham Callback cho hộp thoại Threshold - - «+ «<++ss+2 57

Trang 9

Hình 4.20 Ham Callback cho nút Denoise - 5555 ++ +22 ‡++++ssessss2 58

Hình 4.21 Ham Callback cho nút RESTET 5-5 << + + *‡+++£seeeeesseesees 58 Hình 4.22 Ham Callback cho nút EXXTT - << +22 *+++++s#+ze+zeeesss2 59

Hình 4.23 Giao diện xử lý nhiễu tín hiệu điện tim - 25 5552 59

DANH MỤC BANG BIEU

Bang 4.1 Kết quả SNR, MSE và PRD thu được từ 54 hàm Wavelet khác nhau

Bảng 4.2 Các giá trị thuộc tính của các hộp thoại trong giao diện thiết ké 50

Trang 10

MỞ ĐÀU

Trong cuộc sống hiện nay, khi đời sống vật chất và tinh thần của con ngườikhông ngừng được nâng cao thì nhu cầu về đảm bảo chất lượng sức khỏe của conngười cũng ngày càng tăng Việc chan đoán sớm và định hướng điều trị các bệnh vềtim mạch luôn được đặt lên hàng đầu vì mức độ nguy hiểm của nó rất cao Bệnh tim

mạch dé lại những di chứng nặng nè và là nguyên nhân hàng đầu gây tử vong trên

thế giới Theo thống kê của Tổ chức Y tế Thế giới (WHO) thì cứ 2 giây có một

người chết vì bệnh tim mạch, cứ 5 giây thì có một trường hợp nhồi máu cơ tim và 6giây thì có một trường hợp đột quy Cũng theo ước tính của tổ chức này, hằng nămtrên thế giới có khoảng 17,5 triệu người tử vong do các bệnh tim mach và con số

này được dự đoán là sẽ tiếp tục tăng lên đến 25 triệu người vao năm 2020 Hiện

nay, tín hiệu điện tim là một trong những phương tiện hiệu quả giúp bác sĩ có thểchân đoán các bệnh lý về tim mạch Phép ghi điện tim là một phương pháp chanđoán đơn giản, không xâm lắn, chi phí thấp giúp phát hiện các rối loạn dẫn truyền,bệnh mạch vành, những dấu hiệu liên quan đến rối loạn chuyển hóa hay đột tử [1]

Tín hiệu điện tim ECG (Electrocardiography) là các xung tín hiệu được tạo ra trong

quá trình co bóp của tim, phản ánh hoạt động của tim Đề ghi nhận tín hiệu điện tim,người ta dùng các điện cực đặt lên các vi trí trên cơ thể như chi và thành ngực, sau

đó tín hiệu này được khuếch đại và ghi nhận bởi máy đo điện tim Trong quá trìnhthu nhận tín hiệu điện tim, có rất nhiều nguyên nhân làm tín hiệu bị nhiễu như sựthay đổi tần số nguồn điện, tiếp xúc điện cực không tốt hay run cơ, gây khó khăntrong quá trình chân đoán cho bệnh nhân Mặc khác, biên độ tín hiệu điện tim rấtnhỏ (cỡ vài mV) còn biên độ nhiễu khá lớn, tín hiệu điện tim có ích thường nằmtrong khoảng tần số 0 — 100 Hz và nhiễu tín hiệu cũng nằm trong khoảng tần số nàynên vấn đề hiện nay là làm sao phải xử lý tín hiệu điện tim để loại bỏ thành phầnnhiễu đi chỉ giữ lại phần tín hiệu hữu ích Xử lý nhiễu tín hiệu ECG ở nước ta làmột lĩnh vực tương đối mới nên cũng gặp phải những hạn chế nhất định Hiện nay,nhờ có sự phát triển của công nghệ thông tin, các kỹ thuật toán học khác nhau đã ra

đời và có những đóng góp to lớn trong xử lý tín hiệu như thuật toán thích nghi

Trang 11

LMS, phân bố Wigner — Ville, phép biến đổi Fourier hay phép biến đổi Wavelet,

Trong xử lý tín hiệu, phép biến đổi Fourier là một công cụ toán học giữ vị trí và vai

trò rất quan trọng Tuy nhiên, phép biến đổi này có nhược điểm là chỉ thích hợp vớinhững tín hiệu tuần hoàn, thông tin thu được có tính toàn cục, không phát hiện đượccác đột biến, không đạt được độ phân giải tốt trong miền thời gian — tần số, [2]

Đề khắc phục được những nhược điểm trên, phép biến đổi Wavelet là mộttrong những lựa chọn hang dau vì với những tín hiệu không ổn định như là tín hiệuđiện tim thì phân tích thời gian — tần số dựa trên phép biến đổi Wavelet là phù hợp

nhất Xuất phát từ những cơ sở trên, tôi quyết định chọn đề tài “Ứng dụng phép

biến déi wavelet trong xử lý nhiễu tín hiệu điện tim”

Mục đích

- Tim hiểu các quá trình thu nhận, các phương pháp đã va đang dùng dé xử lý

nhiễu tín hiệu điện tim.

- _ Nghiên cứu phép biến đổi Wavelet và ứng dụng của phép biến đổi này trong

xử lý nhiễu tín hiệu điện tim.

- _ Sử dụng công cụ Wavelet trong Matlab dé xử lý nhiễu

- Đánh giá kết quả thu được

Đối tượng và phạm vi nghiên cứu: luận văn tập trung khảo sát Wavelet phùhợp và áp dụng lọc nhiễu trên tín hiệu điện tim bang phương pháp đặt ngưỡng

Ý nghĩa khoa học và thực tiễn của đề tài: tín hiệu sau lọc nhiễu được ứngdụng trong chan đoán và định hướng điều trị các bệnh tim mạch, qua đó, góp phầntạo tiền đề cơ sở cho những nghiên cứu sâu hơn về xử lý tín hiệu y sinh tại khoa Vật

lý, Trường Đại học Sư phạm Thành phố Hồ Chí Minh nói riêng và nghành Vật lý

kỹ thuật y sinh tại Việt Nam nói chung.

Nội dung luận văn được trình bày trong bốn chương:

Chương 1: Tông quan: phân tích, đánh giá công trình nghiên cứu của các tác giả trong và ngoài nước liên quan mật thiét đên luận văn, nêu ra những vân đê còn tôn tại, chỉ ra những vân đê mà luận văn tập trung nghiên cứu, giải quyêt và khái

Trang 12

quát nội dung luận văn Ngoài ra, luận văn còn trình bay các cơ sở hình thành tín

hiệu điện tim và các loại nhiễu ảnh hưởng đến chất lượng tín hiệu điện tim trong quá trình ghi nhận.

Chương 2: Các phương pháp xử lý tín hiệu: Nội dung chính của chương này

chính là biến đổi Wavelet — phép biến đổi phát triển dựa trên nền tảng của STFT

Chương 3: Phương pháp thực hiện: trình bày phương pháp khử nhiễu trên tín

hiệu điện tim bằng biến đổi Wavelet Trong phan nay, mô hình và nguyên tắc khử

nhiễu được đưa ra, đồng thời giới thiệu phương pháp đặt ngưỡng được dùng trong

luận văn Ngoài ra, tôi còn trình bày các hệ số đánh giá chất lượng tín hiệu điện tim

từ đó đưa ra thuật toán khử nhiễu của mình.

Chương 4: Kết quả: trình bày các kết quả thu được trong quá trình ứng dụngthuật toán khử nhiễu để tìm ra mức phân tách tốt nhất, hàm Wavelet mẹ tốt nhất vàđưa ra đánh giá hiệu quả khử nhiễu giữa ngưỡng cứng và ngưỡng mềm Mặc khác,luận văn còn đưa ra giao diện xử lý nhiễu xây dựng bằng lập trình giao diện GUI

trong Matlab.

Trang 13

Chương 1 TONG QUAN

1.1 Giới thiệu tong quan

Trên thế giới, đã có rất nhiều công trình nghiên cứu về tín hiệu điện tim từ rất

sớm Năm 1787, L Galvani nhận thấy có sự co cơ đùi của ếch khi bị phóng điện.Ong đã đặt giả thuyết về dòng điện trong động vật và đặt nền tang cơ sở cho nghiêncứu về tín hiệu điện tim Năm 1825, các nhà khoa học chứng minh được có sựphóng điện và dòng điện trong cơ thé con ếch đúng như Galvani đã từng dự đoán.Năm 1843, Matteucci chứng minh rang có thé đo được dòng điện từ cơ tim nghỉ.Năm 1878, Engelmann lần đầu tiên đưa ra biéu đồ về sự dao động điện thế theo thờigian của tim ếch Khoảng năm 1887 — 1888, Augustus Desiree Waller là người đầu

tiên dung điện kế mao dẫn của Lippmann ghi nhận được điện thé tương ứng với

nhịp đập của tim từ bề mặt cơ thể người Năm 1893, nhà khoa học người Hà LanWilliam Einthoven đã đưa ra dự đoán một dạng sóng gần giống với sóng điện timthực gồm năm đỉnh do ông đặt tên là P, Q, R, S, T va lần đầu tiên đưa ra khái niệm

đồ thị điện tim (Electrocardiography) Sau đó, Einthoven tiếp tục phát triển một loạiđiện kế mới gọi là điện kế dây để ghi nhận tín hiệu điện tim vào năm 1900 Năm

1913, Sir Thomas Lewis và đồng nghiệp đã tiến hành nghiên cứu ý nghĩa của tínhiệu điện tim và cho xuất bản một công trình khoa học đặt ra các tiêu chuẩn về điệncực điện tim tạo tiền đề cho việc sử dụng tín hiệu điện tim như một công cụ không

xâm lan trong chân đoán chức năng tim mạch vào năm 1920 [12] Năm 1934, FrankWilson đưa ra định nghĩa về các đạo trình từ ý tưởng “tam giác Eithhoven” Sau đó,

các nhà khoa học tiếp tục nghiên cứu nhằm hoàn thiện và phát triển lý thuyết về tín

hiệu điện tim.

Ngoài ra, phân tích và xử lý nhiễu tín hiệu y sinh trong đó có tín hiệu điện tim

là một trong những chủ đề nóng nhận được sự quan tâm của đông đảo các nhà khoahoc trong những năm gan đây Trong [11], Himanshu Gothwal đã sử dung FFT(Fast Fourier Transform) và mang neutron nhân tạo dé dò tìm các dấu hiệu bệnh lýcủa chứng rối loạn nhịp tim trong tín hiệu điện tim Trong [10], Mahajan, R đã sửdụng DCTT (Discrete Cosin Transform) và FFT để nén tín hiệu ECG Uchaipichat, N

Trang 14

và Inban, S đã phát triển kỹ thuật dò phức hop QRS sử dụng kỹ thuật STFT (Short

Time Fourier Transform) [15] Có nhiều phương pháp nâng cao chất lượng tín hiệu

điện tim, trong đó, phương pháp được sử dụng rộng rãi là thuật toán thích nghỉ LMS

nhưng thuật toán toán này không thích hợp với những tín hiệu không ổn định nhưtín hiệu điện tim, nó gây ra sự dư thừa các thông số trung bình trong lọc thông thấp[9] Mặc khác, biến đổi Fourier cũng được ứng dụng trong phân tích và xử lý tínhiệu, tuy nhiên, cũng giống như thuật toán thích nghi LMS, biến đổi Fourier chỉthích hợp với những tín hiệu tuần hoàn và khó phát hiện các đột biến cũng nhưnhững tín hiệu không ôn định như tín hiệu điện tim

Trong luận văn này, tôi tập trung nghiên cứu xử lý nhiễu tín hiệu điện timbằng phép biến đổi Wavelet vì biến đổi Wavelet khắc phục được tất cả những hạnchế của thuật toán thích nghi LMS và biến đồi Fourier Mặc khác, biến d6i Waveletthích hợp với những tín hiệu không ôn định như là tín hiệu điện tim

1.2 Cơ sở lý thuyết tín hiệu điện tim

1.2.1 Cau trúc giải phẫu và chức năng của tim

Van 2 la (Van nhỉ - that trai)

Tâm thất trái

Tinh mạch chủ dưới '

Tâm thất phải Vách liên thất

Hình 1.1 Cấu tao tim người [5]

Tim là một tô chức cơ rỗng gồm 4 buồng, có độ day mỏng không đồng đều.Bên ngoài được bao bọc bởi một túi sợi gọi là bao tim, bên trong được cấu tạo bằng

Trang 15

cơ tim có vách ngăn chia tim thành hai nửa riêng biệt là tim trái và tim phải Tim

trái bom máu ra ngoại vi, còn tim phải bơm máu lên phổi Mỗi nửa tim lại đượcchia ra thành hai buồng: buồng trên là tâm nhĩ có thành mỏng làm nhiệm vụ chứamáu; buồng dưới là tâm thất có thành dày, khối cơ lớn giúp cung cấp lực day máu

đi đến các bộ phận Giữa tâm nhĩ và tâm thất có van nhĩ thất; giữa tâm thất trái vàđộng mạch chủ, tâm thất phải và động mạch phổi có van bán nguyệt Các van nàyđảm bảo cho máu chỉ di chuyên theo một chiều từ tâm nhĩ xuống tâm thất, từ tâmthất xuống động mạch chứ không cho đi ngược lại, nhờ vậy đảm bảo được sự tuần

hoàn máu [5].

Ngoài ra, tim còn có một câu trúc đặc biệt thực hiện chức năng phát xung và

dẫn truyền xung được gọi là hệ dẫn truyền Hệ thống dẫn truyền gồm:

- Nut xoang nhĩ (SAN): là nút tạo nhịp cho toàn bộ trái tim, nam ở cơ tâm nhĩ

phải, phát xung với tần số khoảng 120 lần/phút

- Cac đường liên nút: nằm ở giữa nút xoang nhĩ và nút nhĩ thất, thực hiện chức

năng dẫn truyền các xung động giữa nút xoang nhĩ và nút nhĩ thất

- Nut nhĩ thất (AVN): nằm ở bên phải vách liên nhĩ, giữ nhiệm vụ làm chậm dẫn

truyền trước khi các xung động được truyền xuống thất với tần số khoảng 50 —

60 lần/phút

- B6 His: bat đầu từ nút nhĩ thất đến vách liên thất thì chia thành hai nhánh trái và

phải chạy đưới nội tâm mac hai that dé dẫn truyền xung động đến hai that, tạiđây, chúng phân nhánh thành mạng Purkinje chạy giữa các sợi cơ tim giúp dẫntruyền xung động xuyên qua các thành của thất Bó His phát xung với nhịpkhoảng 30 — 40 lần/phút

Trang 16

Nhánh trải

Mang Purkinje

út nhỉ that

Nhánh phải

Hình 1.2 Hệ thong dẫn truyền tim [5]

1.2.2 Chu chuyển tim

Khi có một xung động truyền đến cơ tim, tim co giãn nhịp nhàng theo một thứ

tự nhất định Hoạt động này được lặp đi lặp lại và mỗi vòng được gọi là một chu

chuyên của tim [5] Một chu chuyên tim gồm ba giai đoạn chính:

- _ Nhĩ thu: khi xung từ nút xoang nhĩ truyền ra toàn bộ hai nhĩ, tâm nhĩ bắt đầu co

bóp làm áp suất trong tâm nhĩ tăng lên Lúc này van nhĩ thất đang mở nên máu

sẽ chảy từ nhĩ xuống thất làm cho áp suất tại tâm thất tăng lên Thời gian tâmnhĩ thu kéo dai 0,1 giây, sau đó tâm nhĩ dan ra trong suốt thời gian còn lại của

chu kỳ tim.

- Thất thu: khi nhĩ giãn ra thì tâm thất bắt đầu co lại do sự lan truyền xung đến

toàn bộ tâm thất Giai đoạn thất thu kéo đài 0,3 giây gồm hai thời kỳ chính làthời kỳ tăng áp và tống máu Thời kỳ tăng áp kéo dai 0,05 giây, sự co bóp củatâm thất làm áp suất trong tâm thất cao hơn trong tâm nhĩ nên van nhĩ thất đónglại nhưng vẫn còn thấp hơn so với áp suất ở động mạch do đó van bán nguyệtvẫn còn đóng, áp suất trong tâm thất tiếp tục tăng cao Thời kỳ tống máu kéodài 0,25 giây, áp suất trong tâm thất tăng cao hơn so với áp suất ở động mạch

làm van bán nguyệt mở ra, máu chảy mạnh vào động mạch.

- _ Tâm trương toàn bộ: là giai đoạn toàn tim nghĩ cả nhĩ lẫn thất, kéo dài 0,4 giây

Lúc này, tâm thất bắt đầu giãn ra trong khi tâm nhĩ cũng đang giãn, áp suấttrong tâm thất thấp hơn trong động mạch nên van bán nguyệt đóng lại Áp suất

Trang 17

trong tâm thất tiếp tục giảm đến khi nhỏ hơn trong tâm nhĩ thì van nhĩ thất mở

ra, máu tiếp tục được hút từ tâm nhĩ xuống tâm thất

LEFT

SINU§ AVM ATRIOVENTRICULAR

NODE ` NDE

fREGMT ÄTRiUM

LEFT VENTRICLE

accessory ——

CONNECTION `

IIGHT VENTRICLE

Hình 1.3 M6t chu chuyén tim [5]

1.2.3 Cơ sở phat sinh điện thé tế bào

a Điện thế nghỉ

Bên trong và bên ngoài màng tế bào đều có các ion đương và ion âm chủ yếu

là Na‘, K* và Cl Tính thắm của màng với các ion khác nhau: thấm rất ít với cácion Na” và tự do thâm thấu với K*, Cr làm cho nồng độ K* bên trong cao hơn bênngoài màng tế bào Do sự chênh lệch nồng độ ion K” nên sẽ có sự chuyền dời cácion K* từ bên trong ra bên ngoài màng tế bào Kết quả là bên ngoài màng tế bào sẽ

có điện thế dương hơn so với bên trong và tạo ra một hiệu điện thế qua màng Lúc

này, tế bào sống có tính chất giống như một pin điện với điện cực dương hướng ra

ngoài và điện cực âm hướng vào trong Tính phân cực của màng và trạng thái điện

bình thường gọi là điện thế nghỉ (khoảng -90mV)

Ngoài ra, đê duy trì sự ôn định điện thé trong và ngoài màng tê bào còn có một

hệ thông bơm day Na” và K* Cứ mỗi vòng bơm có ba ion Na” đi ra ngoài màng vàhai ion K* đi vào bên trong mang tạo hiệu điện thế âm trong màng tế bào [7]

b Điện thế hoạt động

Khi có kích thích, màng tế bào thay đổi tính thâm thấu với các loại ion Na”,

KT và có sự dịch chuyên ion qua màng Sự dịch chuyên đó làm thay đổi trạng thái

cân băng ion và gây nên sự biên đôi điện thê đột ngột từ điện thê âm lúc nghỉ sang

Trang 18

điện thế dương của màng, rồi ngay lập tức quay trở lại điện thế âm Điện thế đó gọi

là điện thế hoạt động Điện thế hoạt động gồm ba giai đoạn:

- _ Giai đoạn khử cực: Khi tế bào bị kích thích, tính thấm của mang thay đổi làm

cho điện thé màng dương lên (tăng từ -90mV lên), trạng thái phân cực bị phá

vỡ Khi điện thế khoảng từ -70mV đến -50mV, kênh Na mở đột ngột, màng trở

thành rất thấm ion Na? làm cho một lượng lớn ion Na” ùa vào bên trong tế bàolàm điện thế tế bào tăng từ -90mV lên đến 0mV Trạng thái này gọi là khử cực

và kéo đài khoảng vài phần vạn giây

- Giai đoạn tái cực: khoảng vài phần vạn giây sau khi màng tăng vọt tính thắm

với Na” thì kênh Na” đóng lại, kênh K* mở rộng ra làm cho K” khuếch tán từtrong ra ngoài màng tế bào, tái tạo lại trạng thái phân cực của tế bào (-90mV)

Trạng thái này gọi là tái cực, kéo dài hàng vạn giây do kênh K” mở rộng từ từ.

Hau điện thé duong: sau khi tai cuc, dién thé mang tiép tuc giam xuống

-100mV trong khoảng vai ms mới trở về trạng thái bình thường (-90mV)

Gdnghi Gđkhửcựục Gd hoạt động (sau khử cực) Gd taicuc Gdnghi

Hình 1.4 Sự khử cực và tái cự [5]

1.2.4 Quá trình hình thành tín hiệu điện tim

Tìm hoạt động được là nhờ vào một xung động truyền qua một hệ thống thầnkinh tự kích của tim [5] Đầu tiên, nút xoang nhĩ sẽ phát xung tự động, xung động đi

từ nút xoang tỏa ra cơ nhĩ làm cơ nhĩ khử cực trước, nhĩ bóp day máu xuống that.Sau đó, xung động truyền đến nút nhĩ thất, nút nhĩ thất sẽ tiếp nhận các xung độngnày và truyền qua His xuống thất làm thất khử cực, lúc này thất đã đầy máu sẽ bóp

Trang 19

mạnh đây mau ra ngoại biên Hiện tượng nhĩ thất khử cực lần lượt trước sau như thếchính là để duy trì quá trình huyết động bình thường của hệ thống tuần hoàn Đồngthời, tạo ra tín hiệu điện tim gồm hai phan chính: nhĩ đồ và thất đò

a Nhĩ đồ

Là đồ thị ghi lại hoạt động của tâm nhĩ Nút xoang nhĩ phát xung động, xung

động tỏa ra làm cơ nhĩ khử cực trước Các đợt sóng khử cực có hướng chung là từ

trên xuống dưới, từ phải sang trái và làm với phương ngang một góc 49” [5] Đợt

sóng này được máy ghi điện tim ghi lại với dạng một sóng dương, đơn, thấp, nhỏ và

có độ lớn khoảng 0,25mV gọi là sóng P Sau khử cực, tâm nhĩ bắt đầu tái cực, quá

trình tái cực ở tâm nhĩ được ghi nhận bằng một sóng âm nhỏ gọi là sóng Ta Tuynhiên, ngay lúc này lại xuất hiện khử cực tâm thất với điện thế mạnh hơn nên trênđiện tâm đồ ta thường không thấy được sóng Ta này

Hình 1.5 Khử cực ở tâm nhĩ và sự hình thành sóng P [5]

b Thất đồ

Là đồ thị ghi lại hoạt động của tâm thất Gồm hai giai đoạn:

Khử cực: ngay khi nhĩ còn đang khử cực thì xung động đã bắt đầu truyền vàonút nhĩ thất xuống thất và hai nhánh bó His xuống khử cực thất Việc khử cực bắt

đầu từ giữa mặt trái đi xuyên qua mặt phải của vách liên thất, sóng khử cực hướng

từ trái sang phải Máy sẽ ghi nhận được một sóng âm nhỏ, gọn gọi là sóng Q.

Trang 20

Hình 1.6 Sự khứ cực ở vách liên that và hình thành sóng Q [5]

Xung truyền xuống và tiền hành khử cực đông thời ca hai tâm thất theo hướngxuyên qua bé mặt day cơ tim, từ đưới nội tâm mạc ra dưới thượng tâm mạc Lúcnày, vectơ khử cực hướng vẻ bên trái nhiều hơn vi thất trái day hon va tim nằmnghiêng hướng trục giải phẫu về bên trái nhiều hơn Vectơ khử cực hướng từ phải

sang trái và máy ghi nhận được một làn sóng đương, cao, nhọn gọi là sóng R Sau

cùng, xung truyền xuống và khử cực vùng đáy thất Vectơ khử cực hướng từ trái

sang phải Máy sẽ ghi nhận một sóng âm, nhỏ, nhọn gọi là sống S.

Trang 21

Hình 1.7 Sự ki cực ở tâm thất và hình thành sóng R,S [5]

Tóm lai, khử cực thất gồm ba làn sóng cao, nhọn Q, R S biến thiên phức tap

nên được gọi là phức bộ QRS (QRS complex) Trong phức bộ QRS, sóng chính lớn

nhất là sóng R Nếu ta đem tông hợp ba vector khử cực Q, R, S sẽ được một vector khử cực trung bình có hướng từ trên xuống dưới và từ phải sang trái, hợp vớiphương ngang một góc 85”, vector đó được gọi là trục điện tim hay trục QRS

Tái cực: sau khi thất khử cực xong sé qua thời ky tái cực chậm Giai đoạn nàyđược thẻ hiện trên điện tâm đồ bằng một đường đăng điện gọi là đoạn S — T Sau đó

là thời ky tái cực nhanh tạo nên sóng T Tái cực có hướng xuyên qua cơ tim, từ lớp

đưới thượng tâm mạc vào lớp dưới nội tâm mạc.

Trang 22

Hình 1.8 Sự tái cực ở tâm thất và hình thành sóng T [5]

Vectơ tái cực hướng từ trên xuống dưới và từ phải sang trái tạo ra một sóng

dương, thấp, không đối xứng mà có sườn lên thoai thoải hon và sườn xuống dốc

đứng hơn gọi là sóng T Sau khi kết thúc sóng T còn có thé thay được một sóng

cham nhỏ gọi là sóng U đặc trưng cho giai đoạn tái cực muộn.

1.2.5 Đặc điểm tín hiệu điện tim

Tín hiệu điện tim là tín hiệu không ôn định có dạng phức tạp tan số lặp lạitrong khoảng 0,05 — 300 Hz Tín hiệu điện tim gồm có 5 đỉnh P, Q, R, S, T, đặc trưng cho quá trình hoạt động của tìm Khoảng tần số đảm báo chất lượng tín hiệu điện tim được trung thực nằm trong khoảng 0,05 — 100 Hz Giới hạn trên 0,05Hz dé

đảm bảo phức bộ QRS không bị méo và giới hạn dưới 100 Hz đảm bảo trung thực

sóng P và T Sóng điện tim có biên độ nhỏ, đỉnh lớn nhất cũng chỉ có biên độ

khoáng 1,5 — 2mV,

1.3 Nhiễu và ảnh hưởng nhiễu đến tín hiệu điện tim

Tín hiệu điện tim là tín hiệu điện sinh học không ôn định chứa nhiều thông tin

lâm sang quý giá nhưng do có biên độ nhỏ nên khoảng tần số chứa thông tin có íchlai dé bị ảnh hưởng bởi nhiêu loại nhiễu khác nhau

Trang 23

1.3.1 Các loại nhiễu

a Nhiễu từ mạng cung cấp điện

Khoảng tan số tín hiệu điện tim có ich năm trong khoảng 0,05 — 100 Hz, tan sốnguồn điện (50 — 60 Hz) cũng nằm trong khoảng tần số này Mặc khác, mạng lướiđiện có mặt ở khắp nơi trong phòng khám, bệnh viện có thé tác động lên máy ghiđiện tim Nếu tiền hành đo điện tim ở những nơi có từ trường mạnh của nguồn cungcấp điện thì nhiễu tan số 50 — 60 Hz sẽ gây ảnh hưởng đến tín hiệu điện tim ghi

nhận.

b Nhiễu tín hiệu điện cơ

Khi bệnh nhân có tâm lý căng thing, lo lắng, sợ hoặc mat bình tĩnh sẽ dé bịrun cơ, tạo tín hiệu điện cơ làm nhiễu tín hiệu điện tim Dài tần nhiễu này nằm trong

khoảng 20 — 30 Hz.

c Nhiễu do tiếp xúc điện cực và da

Trong quá trình chuan bị ghi nhận tín hiệu điện tim, do các yếu tố khách quanlẫn chủ quan có thể gây ra sự tiếp xúc không tốt giữa điện cực và da Da người thường gò ghé, lớp biểu bì có những tế bào già chết hoặc bụi Ngoài ra còn có ảnh

hưởng bởi những sợi lông mọc dưới da Mặc khác, mồ hôi bài tiết ra ngoài qua các

lỗ chân lông có chứa các ion K*, Na” Cl [3] Tất cả các yêu tổ trên hình thành ở lớptiếp xúc giữa điện cực và đa một điện thế tiếp xúc Lớp tiếp xúc này bị phân cực vàxuất hiện hai lớp điện tích trái dấu Khi điện cực chuyên động tương đổi so với da,

các điện tích bị xáo trộn Từ đó, điện tích sẽ phân bỗ lại và quá trình này dừng lại

khi có cần băng.

Trong quá trình khảo sát anh hưởng nhiễu đến chất lượng tín hiệu điện tim, trong [3] đã chỉ rõ răng lọc nhiễu từ mạng cung cấp điện là cần thiết nhất vì tính chất phô biến và khó kiêm soát của nó Người ta cho rằng nhiễu sinh ra từ tín hiệu

có tần số cao được giả định tuân theo hàm phân bố Gauss [2] Các loại nhiễu còn lại

có tần số ôn định nên ta có thé dé dàng giải quyết bằng các bộ lọc cô định.

Trang 24

1.3.2 Nhiéu Gauss trang (White Gaussian Noise)

Tín hiệu điện tim chứa nhiều thông tin lâm sàng quý giá trong khoảng tan số 0

— 100Hz Tuy nhiên, trong khoáng tan số này ECG dé bị anh hưởng của các loại

nhiễu khác nhau như nhiễu nguồn điện nhiễu tín hiệu điện cơ EMG, nhiễu do tiếp

xúc điện cực không tốt gây khó khăn trong quá trình chân đoán Các loại nhiều này

đều có phân bố xác suất là phân bố Gauss và có the được xấp xi bằng một nhiều

Gauss trắng Do đó, trong quá trình nghiên cứu xử lý nhiễu trên tín hiệu, người ta

thường sử dụng nhiễu Gauss trắng đẻ mô phỏng cho các loại nhiễu hệ thống anh

hưởng lên tín hiệu.

Nhiễu Gauss trắng là nhiều cộng tính có mật độ phỏ công suất là hằng số trêntoàn bộ băng thông và có ham mật độ xác suất tuân theo phân bố Gaussian

Trang 25

Nhiéu Gauss trắng dé mô phỏng cho các loại nhiễu trên có tỷ số tín hiệu trênnhiều nằm trong khoảng 0 < SNR < I8dB

Chương 2 CÁC PHƯƠNG PHÁP XỬ LÝ TÍN HIỆU

2.1 Phép biến đối Fourier (FT - Fourier Transform)

Trong phân tích tín hiệu, người ta thường áp dụng các phép biến đổi lên tín hiệu để có được thông tin khác mà tín hiệu ban đầu không có Có rất nhiều phép

biến đổi được áp dụng nhưng biến đổi Fourier là một công cụ rất mạnh được sử

dụng phô biến Đặc biệt phép biến đổi Wavelet được phát triển dựa trên cơ sở nền

tảng của phép biến đổi Fourier.

Các tín hiệu đo được trong thực tế đều là tín hiệu trong miền thời gian đượcbiểu điển lên đô thị bằng hai trục thời gian và biên độ Tuy nhiên, trong xử lý tín

hiệu thi tín hiệu thường được chuyển sang miễn tan số để thực hiện các mục đích

khác nhau như lọc nhiều, nén hoặc nhận dạng tín hiệu Để chuyên tín hiệu từ

miền thời gian sang miễn tan số, người ta thường dùng phép biến đổi Fourier.

Hình 2.1 Phép biến đổi Fourier [6]

2.1.1 Phép biến đổi Fourier liên tục

Xét tín hiệu x(t) Biến đôi Fourier là tích phân được lấy trong toàn miền thờigian của tín hiệu x(t) với ham mũ cơ số e Sau biến đổi, ta thu được phô tan số

X (@) của tín hiệu x(t) ban đầu.

X(ø)= [x(t)£ “& (2.1)

Trong đó:

x(t): tín hiệu trong miễn thời gian

Trang 26

- X(@): tín hiệu trong miền tan số (phô tan số)

- @=2Zƒ: tần số góc của tín hiệu.

Ngoài ra, dé thu được tín hiệu nguyên mẫu trong miễn thời gian, ta áp dụng

biến đôi Fourier ngược Cũng tương tự như biến đôi Fourier, biến đôi Fourier ngược

là:

x(t)=— | X(ø).c£ “đe (2.2)

Biến đổi Fourier và Fourier ngược được ký hiệu như sau: x(t) X(@) Bản chất của phép biến đôi Fourier chính là chia một tín hiệu thành tông các hàm sin

ứng với các tân sô khác nhau.

Hình 2.2 Phép biến đổi Fourier của tín hiệu có chu kỳ

2.1.2 Biến đổi Fourier rời rac (DFT - Discrete Fourier Transform)

Biến đôi Fourier liên tục được sử dụng rộng rãi trong phân tích tín hiệu Tuy

nhiên, phép biến đổi này có những hạn chế nhất định: độ dài tín hiệu là vô cùng

trong khi tín hiệu thực tế có chiều dài hữu hạn, mặc khác, biến tần số là liên tục

trong khi yêu cầu xử lý trên máy tính là rời rạc Xuất phát từ hạn chế trên đã dẫn

đến sự ra đời của biến đổi Fourier rời rac.

Xét tín hiệu x(n) có chiều dài hữu han L Biến đôi Fourier rời rac N điểm (

N >L) của tín hiệu ban đầu x(n) được xác định theo công thức:

X(&)=Š xíny sở (2.3)

Biên đôi Fourier ngược có dang:

Trang 27

YS X(K)e* (2.4)

Với k=0, 1, , V-l; n=0, Lu, Nel

Trong đó:

- x(n): tín hiệu vào

- X(k): tín hiệu ra sau phép biến đổi DFT

- N:chu kỳ lây mẫu

Từ tín hiệu liên tục tiền hành lấy mẫu ta được tín hiệu rời rạc.

1# H 7 EF

Hình 2.3 Tin hiệu liên tục và tín liệu rời rac

2.1.3 Biến đổi Fourier nhanh (FFT ~ Fast Fourier Transform)

Biến đôi Fourier rời rac (DFT) được sử dụng rộng rãi trong các ứng dụng của

xử lý tín hiệu số để xác định các thành phân tần số của tín hiệu và thực hiện lọc tín

hiệu trong miền tần số Tuy nhiên, phương pháp này gặp phải hạn chế là tốc độ tính

toán chậm Dé khắc phục hạn chế trên, phép biến đổi Fourier nhanh đã ra đời với

mục đích cải tiền tốc độ tính toán của DFT.

Nguyên tắc của phương pháp này là chia nhỏ tập dữ liệu mẫu ra thành các tậpcon nhỏ hơn sau đó thực hiện biến đôi Fourier rời rạc trên từng tập con, nhờ đó ta

loại bỏ được các phép tính toán không cần thiết, qua đó, giảm thời gian tính toán và

độ phức tạp của thuật toán.

Các bước tiến hành biến đôi Fourier nhanh :

- Bước 1; Phân ly DFT N điểm thành hai DFT thành phần N/2 điểm Từ đó,

xác định phương trình tái tông hợp

Trang 28

- Bước 2: Phân ly mỗi DFT N/2 điểm thành 2 DFT N/4 điểm Xác định

phương trình tái tông hợp.

- Bude 3: Cứ tiếp tục như thé cho đến khi tạo ra V/2 DFT 2 điểm

Vậy biến đổi Fourier nhanh đã góp phan cải thiện tốc độ tính toán và giảm đi

độ phức tạp của thuật toán Phép biến đôi Fourier nhanh được ứng dụng rộng rãi

trong phát hiện nhiễu tín biệu

2.1.4 Phép biến đổi Fourier thời gian ngắn (STFT - Short Time Fourier

Transform)

Phép biến đổi Fourier là một công cụ mạnh trong phân tích tín hiệu Tuynhiên phép biến đổi nay có nhược điểm là khi chuyển tín hiệu từ miền thời giansang miền tần số thì mọi thông tin về thời gian bị mat đi trong miền tần số do đókhông thê biết được các sự kiện xảy ra tại thời điểm nào Mặc khác phép biến đôi Fourier không thích hợp với những tín hiệu không ôn định Nhằm khắc phục hạnchế trên, năm 1946, Dennis Gabor đưa ra phép biến đôi Fourier cải tiến thực hiệntrong thời gian ngăn nên được gọi là phép biến đôi Fourier thời gian ngắn

a Nguyên tắc

Nguyên tắc của phương pháp này là phân chia tin hiệu ra thành từng đoạn đủnhỏ sao cho có thể xem tín hiệu trong mỗi đoạn là tín hiệu ôn định, sau đó, thựchiện biến đôi Fourier trên từng đoạn tín hiệu này Như vậy STFT vừa có tính định vịtheo tần số do tính chất của biến đổi Fourier vừa có tính định vị theo thời gian dođược tính trong khoảng thời gian ngắn

Biên độ

0 Thời gian 0 Thời gi an

Hình 2.4 Phép biến đổi Fourier thời gian ngắn

Trang 29

b Dinh nghĩa

Tín hiệu x(t) được nhân với một hàm cửa số W (r-r} dé lay được tín hiệutrong một khoảng thời gian ngắn xung quanh điểm 7 Sau đỏ, phép biến đôi

Fourier được thực hiện trên đoạn tín hiệu này và thu được một hàm phụ thuộc vào

hai tham biến ŠTFT (ø,7):

STET(œ.+)= f Wˆ(t-r)x(r)e “at (2.5)

- STFT do sự giống nhau giữa tín hiệu với phiên ban dịch và biến điệu của hàm

cửa sô cơ bản W (fr)

- STFT có tính định vi thời gian — tan số.

- Thao tác dịch và biến điệu hàm cửa số không làm thay đôi kích thước hàm cửa

số mà chỉ tịnh tiễn theo trục thời gian — tần số

- STFT thé hiện mỗi quan hệ giữa thời gian và tân số tín hiệu, cung cấp thông tin

về thời gian và tần số xuất hiện sự kiện

- Độ phân giải theo thời gian phụ thuộc vào kích thước cửa số

d Hạn chế

Phép biến đôi Fourier thời gian ngắn có ưu điểm là cho một sự hòa hợp khi mồ

tả tín hiệu giữa hai miền thời gian — tần số Tuy nhiên, nó gặp phải hạn chế là khi đã

chọn một cửa số phân tích thì kích thước cửa số không thay đôi trên toàn bộ mặt

phẳng thời gian — tan số Mặc khác, đối với các tín hiệu không ồn định thì STFT

không thê đạt được độ phân giải tốt cả trong miền thời gian và miền tan số Nếu

Trang 30

chon cửa số rộng dé phân tích các thành phan ôn định với độ phân giải tần số tốt thì

không phan tích được với độ phân giải thời gian tốt Ngược lại, nêu chọn cửa sô hẹp

dé đạt được độ phân giải tốt về mặt thời gian thì độ phân giải tần số lại xấu đi Mau

thuẫn này không thê giải quyết được với STFT

2.2 Phép biến đổi Wavelet (WT - Wavelet Transform)

Xuất phat từ han chế của biến đổi Fourier thời gian ngắn (STFT) đặt ra yêu

cau là cần một phép biến đổi mới có thể đáp ứng tốt được cả trong miền thời gianlẫn trong miễn tân số Phép biến đôi Wavelet được phát triển như một công cụ thaythé STFT trong phân tích tín hiệu không ôn định

Tân

Ú Thời gian Ù Thời

Hình 2.5 Phép biển đổi Wavelet

2.2.1 Điểm nỗi bậc so với STFT

Các ham Wavelet được khoanh vùng trong không gian do đó có tính định vị

thời gian tốt Đặc tinh này cùng với đặc tinh định vị trong miền tần số của Wavelettạo điều kiện tốt cho nhiều hàm số và toán tử sử dụng phép rời rac hóa khi biển đôisang miễn Wavelet Sự rời rac hóa này cho kết quả tốt với các ứng dụng nén dit

liệu, lọc nhiễu, phân tích ảnh

Biến đôi Fourier thời gian ngắn STFT sử dụng chỉ một cửa số đuy nhất danghình vuông, cửa số này sẽ cắt tín hiệu hình Sin hay Cosinsao cho vừa với chiều rộng cửa số Cửa sô này được dùng cho tat cả các thành phan tân số trong STFT, do

đó thuật toán phân tích giống nhau cho tat cả các vị trí trong mặt phẳng thời gian tần số Với biến đôi Wavelet thì kích thước cửa số có thé thay đối được Khác với

-biên đôi Fourier chỉ có một tập hàm cơ sở như ham Sin, Cesin còn -biên đôi

Trang 31

Wavelet là tập hợp vô hạn các ham cơ sở Phép biến đôi Fourier không thé đạt được

độ phân giải tốt trong cả miễn thời gian và tần số Phép biến đổi Wavelet có thé đápứng trong miền thời gian lẫn miền tan số, vì vậy thích hợp với những tín hiệu không

(Mother Wavelet functions).

VW +

Hình 2.7 Sóng Sin va Wavelet db10 [6]

Ham Wavelet có thé phân tích và mô tả các đặc tính địa phương của các tínhiệu có hình dạng thay đôi tốt hơn là Fourier

2.2.2 Một số khái niệm cơ bản

a Độ phân giải thời gian - tần số

Khi phân tích những tín hiệu không ôn định như tín hiệu điện tim thì cần biếtthông tin ca về mặt tan số lẫn thời gian của tín hiệu Vậy một phép biến đối thích

Trang 32

hợp với tín hiệu không ôn định phái đồng thời có tính định vị thời gian và tính định

vị tần số Tính định vị của một phép phân tích phụ thuộc vảo tính định vị của hàm

cơ sở được sử dụng trong phép phan tích đó nên các ham cơ sở được sử dụng trong

phân tích các tín hiệu không ôn định phải định vị tốt trong miền thời gian và tân số

Tính định vị của một hảm cơ sở phụ thuộc vào mức độ trải rộng của hảm cơ sở

đó theo thời gian và tan số Nếu mức độ trải rộng của hàm cơ sở càng nhỏ thì độ

phân giải thời gian — tần số của phép biến đổi càng lớn, tính định vị của hàm cơ sở

theo thời gian — tân sô càng cao.

b Nguyên lý bắt định

Trong phân tích tín hiệu, phép phân tích cần phải đạt được độ phân giải tốt trong cả miễn thời gian và tần số Tuy nhiên điều này không thé đạt được vì độ

phân giải thời gian — tần số của một hàm cơ sở cũng tuân theo nguyên lý bat định

Heisenberge Nguyên lý đặt ra một giới hạn tối đa cho độ phân giải thời gian — tan

số của bat kỳ một phép biến đổi tuyến tính nào

apars (2.7)

2z

Theo nguyên lý bat định Heisenberge không thê xác định chính xác tần số nàoxảy ra ở thời điểm nào mà chỉ có thể biết được khoảng tần số nào xảy ra ở một

khoáng thời gian nào mà thôi Điều đó có nghĩa la không thé đạt được độ phân giải

tốt trong miễn thời gian và miền tan số Nếu độ phân giải thời gian càng tốt thì độ

phân giải tần số càng giảm và ngược lại.

Trang 33

- ad: Hệ số co giãn

- b; Hệ số dịch chuyền Hàm f có chu kỳ T là tuần hoàn nếu: f (t+7)= f(t) vteR.

2.2.3 Phép biến đổi Wavelet liên tục (CWT ~ Continous Wavelet Transform)

a Định nghĩa

Biến đôi Wavelet liên tục được xác định là tông trên toàn khoảng thời gian của

tín hiệu nhân theo tỷ lệ, dịch mức của hàm Wavelet [10].

Như vậy tin hiệu cần phân tích sẽ được nhân với một phiên bản của Wavelet

mẹ đã được dịch chuyên theo hệ số dịch chuyên b và co dãn theo hệ số tỷ lệ a sau

đó lay tích phân trên toàn miễn thời gian Kết quả là ở đầu ra thu được các hệ số

Wavelet C là một hàm theo các hệ số a và b Nhân mỗi hệ số với các Wavelet theo

ty lệ và dịch mức tương ứng lại hợp thành tín hiệu nguyên thủy.

b Định tỷ lệ và dịch chuyên Wavelet

Định tỷ lệ: định tỷ lệ Wavelet là kéo giãn hoặc co lại các Wavelet, được đặc

trưng bởi hệ SỐ tỷ lệ a Hệ SỐ tỷ lệ a tỷ lệ nghịch với tần số của tín hiệu:

Trang 34

- _ Hệ số tỷ lệ càng nhỏ thì Wavelet càng co lại nhiều, chỉ tiết thay đổi nhanh do đó

có khả năng biểu điển các tín hiệu có thành phan tan số cao hơn

- Hệ số tý lệ càng lớn thì Wavelet càng dẫn ra, chi tiết thay đổi chậm hơn, thô

hon do đó có thê biéu diễn các tín hiệu có thành phan tần số thấp hơn

Hình 2.8 cho thấy sóng Sin ứng với các hệ số tỷ lệ a khác nhau:

a

f(x)=sin(4x)

aqa=-Hình 2.8 Sự co ddn sóng Sin

Dịch chuyên: địch chuyên một Wavelet là làm trễ hoặc sớm sự bắt đầu của nó

đi K mẫu Dịch chuyên y(t) đi & mẫu ta được y(t-k)

br

Hình 2.9 Dich chuyén Wavelet [6]

c Các bước thực hiện biến đổi Wavelet liên tục

Biến đôi Wavelet liên tục là tông trên suốt khoảng thời gian của tín hiệu đượcnhân bởi phiên bản tỷ lệ và dịch của Wavelet [4] Quá trình này tạo ra các hệ SỐ

Wavelet là hàm của tỷ lệ và vị trí CWT gôm có 5 bước:

Trang 35

- Bước 1: Lấy một Wavelet và so sánh nó với khởi đầu của một tín hiệu nguyên

thủy.

- Bước 2; Tính toán giá trị C là đại lượng đặc trưng cho mức độ tương quan giữa

Wavelet với đoạn tín hiệu dang so sánh Hệ số C càng cao chứng to Waveletgiống tín hiệu càng nhiều Kết quả phụ thuộc vào loại Wavelet được chọn

rane JVI

¢= o.oie2

Hình 2.10 Bude / và 2 cua CWT [6]

- Buée 3: Dịch chuyén Wavelet sang phai rồi thực hiện lại bước | và 2, tiếp tục

thực hiện cho đến khi bao trùm toàn bộ tín hiệu.

- Bước 5: Lap lại từ bước 1 đến bước 4 cho tắt ca tỷ lệ

Sau khi thực hiện biến đổi Wavelet liên tục sẽ thu được một tập các hệ số

được tạo ra bởi những tỷ lệ khác nhau (co giãn) ứng với những đoạn tín hiệu khác

nhau Các hệ số tạo thành kết quả hồi quy của tín hiệu nguyên thúy thực hiện trêncác Wavelet Như vậy, biến đôi Wavelet liên tục được thực hiện ở mọi tỷ lệ ứng với

toàn bộ tín hiệu.

Trang 36

Nếu biến đôi Fourier bị hạn chế bởi nguyên lý bất định Heisenberge ở chỗ làkhông thé đạt được độ phân giải tốt cả trong miễn thời gian lẫn trong miễn tần số thìvới biến đôi Wavelet có thẻ đáp ứng được trong miền thời gian — tần số Biến đôiWavelet đưa ra một giải pháp rất linh hoạt như sau: nó thực hiện ở mọi ty lệ ứng vớitoàn bộ tín hiệu, tỷ lệ cao ứng với tần số thấp, tỷ lệ thấp ứng với tần số cao; thànhphan tín hiệu tan số cao sẽ có độ phân giải tốt hơn trong miễn thời gian còn thànhphan tín hiệu tần số thấp sẽ phân giải tốt hơn trong miền tan số [6]

Hình 2.13 Mar phăng thời gian — tan số với biến đổi Wavelet

Trong hình 2.13 thé hiện rõ điều đó: ở thành phan tan số cao, bề rộng ở mặtphẳng tần số lớn trong khi bề rộng ở mặt phăng thời gian lại rất nhỏ, điều đó cónghĩa là ở thành phan tan số cao thì độ phân giải tốt hơn ở miễn thời gian và độphần giải kém ở miền tan so Ngược lai, ở thành phần tần số thấp thì bè rộng mặtphang tần số nhỏ trong khi bề rộng mat phẳng thời gian lớn hay nói cách khác đi là

độ phân giải tốt trong miền tần số và độ phân giải thấp trong miễn thời gian Nhưvậy, trong trường hợp này nguyên lý bất định vẫn được đảm bảo

2.2.4 Biến đổi Wavelet rời rac (DWT — Discrete Wavelet Transform)

Biến đổi Wavelet liên tục tạo ra các hệ số ứng với mọi tỷ lệ trên toàn bộ tínhiệu do đó độ dư thừa rất cao phát sinh nhiều dữ liệu ảnh hưởng đến hiệu quả và mức độ chính xác của nó Yêu cầu đặt ra là cân chọn một tập con các tỷ lệ và vị trí nhằm giảm thiêu tính toán Trong công trình [4] cho thấy néu chọn các ty lệ và vi trí

dựa trên hàm bậc hai còn gọi là các vị trí và mức dyamic thì phép phân tích sẽ hiệu

quả hơn mà vân chính xác Quá trình trên được gọi là biến đổi Wavelet rời rạc

Trang 37

(DWT) Năm 1988, Mallat đã đưa ra thuật toán sử dụng các bộ lọc dé thực hiện

DWT Thuật toán Mallat là bộ mã hóa băng con hai kênh.

a Lọc một tầng: các xấp xỉ và chỉ tiết

Tín hiệu gồm hai thành phần tần số là cao và thấp Với nhiều tín hiệu, thành phan tần số thấp là quan trọng nhất dùng đẻ nhận biết tín biệu, thành phan tan số cao chỉ lam tăng thêm độ sắc và độ nét của tín hiệu Một ví dụ điền hình là tiếng nói con người, nếu loại bỏ thành phan tần số cao đi thì tiếng nói có khác nhưng vẫn hiểu

là đang nói gì, nhưng nếu loại bỏ thành phần tần số thấp đến một mức nảo đó thìkhông còn nghe rõ nữa Trong biển đôi Wavelet, người ta đưa vào khái niệm xấp xi

và chỉ tiết dé đặc trưng cho các thành phan tần số này:

- _ Xấp xi là thành phan có tỷ lệ cao tức là độ co dan cao, tần số thấp của tín hiệu

- Chỉ tiết là thành phan có ty lệ thấp, tức độ co dan thắp, tần số cao của tín hiệu

Bộ lọc một tang gồm hai thành phần chính là bộ lọc thông thấp và bộ lọcthông cao Lọc thông thấp là bộ lọc chỉ cho thành phan tín hiéu có tần số thấp hơntan số quy định đi qua, còn lọc thông cao chỉ cho thành phan tan số cao hơn tan số

quy định đi qua.

Tín hiệu nguyên thủy S sau khi đi qua bộ lọc thông thấp va bộ lọc thông cao

tạo ra hai tín hiệu (hình 2.14) Tuy nhiên, nêu thực hiện với tín hiệu thực thì dữ liệu

ra sẽ tăng gấp đôi dữ liệu ban đầu Ví dụ, tín hiệu ban đầu có 1000 mẫu, sau khi đi qua bộ lọc một tầng thu được 1000 mẫu chỉ tiết và 1000 mẫu xấp xí, như vậy tông

Trang 38

a (009 sốo Dee | 500 mẫu

Hình 2.15 Quá trình giảm mau

Hình 2.16 Tink Wavelet một sóng sin có nhiều tan số cao

Hình 2.16 cho thấy biến doi Wavelet rời rac một sóng sin bị nhiễu ở thành

phan tan số cao Tín hiệu S ban đầu sau khi đi qua bộ lọc một tang và giám mẫu thu

được hai thành phan hé số: hệ số chi tiết cD chứa nhiễu tan số cao còn hệ số xấp xi

cA chứa nhiễu thành phan tan số thấp, ít nhiễu hơn tin hiệu S ban đầu

Trang 39

Hình 2.18 Cây Wavelet phân tách tín hiệu

Vẻ lý thuyết, quá trình phân tách tín hiệu có thé lặp lại mãi mãi Trong thực tế,

sự phân tách được thực hiện cho đến khi các chi tiết chỉ còn một mẫu hoặc mộtđiểm Trong phân tích tín hiệu, người ta thường chọn số mức phân tách thích hợpdựa trên bản chất của tín hiệu hoặc các hệ số tiêu chuẩn như entropy, tỷ lệ tín hiệu

Ngày đăng: 05/02/2025, 22:22

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[9] Donoho, D.L. (1995), “De-noising by soft-thresholding”, JEEE, Trans. on Inf.Theory, 41, 3, pp. 613-627 Sách, tạp chí
Tiêu đề: De-noising by soft-thresholding
Tác giả: Donoho, D.L
Năm: 1995
[10] Galya Georgieva — Tsaneva, Krassimir Tcheshmedjiev (2013), “Denoising of Electrocardiogram Data with Methods of Wavelet Transform”, International Conference on Computer Systems annd Technologies — CompSysTech'13, pp. 9 —16 Sách, tạp chí
Tiêu đề: Denoising ofElectrocardiogram Data with Methods of Wavelet Transform
Tác giả: Galya Georgieva — Tsaneva, Krassimir Tcheshmedjiev
Năm: 2013
[11] Himanshu Gothwal, Silky Kedawat, Rajesh Kumar (2011), “Cardiacarrhythmias detection in an ECG beat signal using fast fourier transform andartificial neutron network”, J. Biomedical Science and Engineering, pp. 289 — 296 Sách, tạp chí
Tiêu đề: Cardiacarrhythmias detection in an ECG beat signal using fast fourier transform andartificial neutron network
Tác giả: Himanshu Gothwal, Silky Kedawat, Rajesh Kumar
Năm: 2011
[13] Mahajan (2014), “Hybrid ECG signal compression system: a step toward efficient telecadiology”, EEE, pp. 437 - 442 Sách, tạp chí
Tiêu đề: Hybrid ECG signal compression system: a step towardefficient telecadiology
Tác giả: Mahajan
Năm: 2014
[14] Mikhled Aifaouri, Khaled Daqroup (2008), “ECG signal denoising by Wavelet transform thresholding”, American Journal of Applied science, pp.276 — 281 Sách, tạp chí
Tiêu đề: ECG signal denoising by Wavelettransform thresholding
Tác giả: Mikhled Aifaouri, Khaled Daqroup
Năm: 2008
[1] Nha xuất bản y học (2009), Điện tâm dé trong thực hành lâm sàng, Dai hoc Y được Thành phỗ Hồ Chí Minh, Hồ Chí Minh Khác
[2] Nguyễn Hữu Đông (2014), Thu nhận và xử lý tín hiệu điện cơ bằng phép biển đổi Wavelet, Luận văn thạc sĩ, Trường Đại học Bách Khoa Thanh phố Hồ Chí Minh. H6 Chi Minh Khác
[4] Nguyễn Hoàng Hải, Nguyễn Việt Anh, Phạm Minh Toàn, Ha Tran Đức (2005), Công cụ phân tích Wavelet và ứng dụng trong Matlab, Nhà xuất bán khoa học và kỹthuật, Hà Nội Khác
[5] Quách Mỹ Phượng (2006), Thiết kế và chế tạo thiết bị do ECG giao tiếp với máy tinh, Luận văn tốt nghiệp, Trường Dai học Bách Khoa Thành phó Hỗ Chí Minh, Hồ Chí Minh Khác
[6] Đoàn Minh Quân, Nguyễn Kim Dung, Nguyễn Hữu Trường, Hà Thị Lan Anh (2011), Phép biến đổi Wavelet, Báo cáo chuyên để môn học, Học viện công nghệ bưu chính viễn thông, Hà Nội Khác
[7] Vũ Thị Hoài Thanh (2009), Khảo sát tin hiệu điện tim bằng thiết bị Biopae MP30, Luận văn tốt nghiệp, Trường Dai học Sư phạm Thành phó Hồ Chí Minh, HồChí Minh Khác
[12] Lewis T (1920), “The mechanism and graphic registration of the heart beat’, London: Saw and Sons, pp.252 Khác

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN