1. Trang chủ
  2. » Đề thi

ĐỀ THI THPT QUỐC GIA Ôn Tập Thi Đại Học

20 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 486,52 KB

Nội dung

Khung  ma trận Chủ đề Mức độ Tổng NB TH VD VDC 1. Ứng dụng đạo hàm để kshs và vẽ đồ thị của hàm số 3 4 2 3 12 2. Hàm số lũy thừa, hàm số mũ và  hàm số logarit 2 3 2 0 7 3. Nguyên hàm, tích phân và ứng  dụng 2 1 2 1 6 4. Số phức 1 2 1 1 5 5. Khối đa diện (phần thể tích) 1 1 0 1 3 6. Mặt nón, mặt trụ, mặt cầu 1 1 1 0 3 7. PP tọa độ trong không gian 3 2 1 2 8 8. Tổ hợp, xác suất 1 0 0 1 2 9. Cấp số cộng, cấp số nhân 1 0 0 0 1 10. PT  BPT  0 0 0 1 1 11. Véc tơ trong không gian, quan  hệ vuông góc trong không gian 0 1 1 0 2 Tổng số câu 15 15 10 10 50 Chủ đề 1: Ứng dụng đạo hàm để kshs và vẽ đồ thị của hàm số Câu 1 (NB): Khoảng đồng biến của hàm số  3 2 3 4 y x x    là A.        ; 2 2; . B.  2; 0 . C.       ;0 2; . D.  0; 2 . Lời giải: TXĐ:  . 2 3 6 3 ( 2) y x x x x      0 0 2 x y x         .  Lập bảng biến thiên, ta thấy hàm số đồng biến trên khoảng 2;0 Câu 2 (NB): Cho hàm số  21 y xx   . Trong các khẳng định sau, khẳng định nào là đúng. A. Hàm số nghịch biến trên   .  B. Hàm số đồng biến trên từng khoảng xác định. C. Hàm số đồng biến trên   .             D. Hàm số có duy nhất một cực trị. Lời giải: Ta có  2 3 0 1 ( 1) y x x       nên hàm số đồng biến trên từng khoảng xác định. Câu 3 (NB): Cho hàm số  liên tục trên đoạn  có bảng biến thiên như hình vẽ: D     y f x    2;3 , Khẳng định nào sau đây là khẳng định đúng ? A. Giá trị cực tiểu của hàm số là  B. Hàm số đạt cực đại tại điểm  C. Hàm số đạt cực tiểu tại điểm  D. Giá trị cực đại của hàm số là  Câu 4 (TH): Cho hàm số  xác định, liên tục trên đoạn  và có đồ thị đường cong ở hình vẽ  bên. Mệnh đề nào dưới đây đúng trên đoạn  ? A. Hàm số ( ) y f x  đạt giá trị lớn nhất tại x  2. B. Hàm số ( ) y f x  đạt cực tiểu tại điểm x  1. C.  Hàm số ( ) y f x  nghịch biến trên khoảng( 3;0).  D.  Hàm số nghịch biến trên khoảng  . Câu 5 (TH): Cho hàm số    f x có đạo hàm          2 3 1 1 2 f x x x x      . Hàm số    f x đồng biến  trên khoảng nào dưới đây? A.    ; 1 . B.   1;1 . C. (2; ).  D. (1; 2). Lời giải : Ta có bảng biến thiên của hàm số là:  0. x 1. x 1. 5.   y f x  3;3 3;3   y f x  1;3 Vậy hàm số   f x đồng biến trên khoảng 1; 2. Câu 6 (TH): Đồ thị hình bên là của hàm số nào? A. 4 2 2 2 y x x     . B. 4 2 2 2 y x x    . C. 4 2 4 2 y x x    . D. 4 2 2 3 y x x    . Lời giải: Hình dáng đồ thị  là  của hàm số bậc 4  4 2 y ax bx c      và đồ thị có bề lõm quay lên nên  a  0 , vậy  loại đáp án A. Đồ thị hàm số giao với trục Oy tại điểm   0; 2 2 c   , vậy loại đáp án D. Từ đồ thị hàm số đạt cực trị tại  01 xx       ,  Đáp án C có  3 0 4 8 0 2 x y x x y x             Đáp án đúng là B. Câu 7 (TH): Đồ thị hàm số     3 2 9 24 4 y x x x có điểm cực tiểu và cực đại lần lượt là    1 1 ; A x y và    2 2 ; B x y . Giá trị  y y 1 2 bằng: A. y y 1 2   2 . B. y y 1 2   4. C. y y 1 2   0. D. y y 1 2   44. Lời giải: Ta có      2 3 18 24 y x x              2 24 0 4 20 x y y x y x y O 21 1 1 Lập bảng biến thiên suy ra điểm cực tiểu và cực đại lần lượt là      4; 20 ; 2; 24 A B . Khi đó  y y 1 2     20 24 4 . Câu 8 (VD): Cho đồ thị hàm số  y 2x2 x   . Gọi   ,   ;   0 M a b a  là điểm thuộc đồ thị mà khoảng  cách từ M đến hai tiệm cận là bằng nhau. Tìm  : a b  A. 0 B. 1 C. 2 D. 3 Lời giải: Gọi  2 ; , 2x M x x        theo giả thiết ta có phương trình:  4 2 2 x x    . Từ đó tìm được M(4; 4) Câu 9 (VD): Cho hàm số     y f x xác định, liên tục trên   và có bảng biến thiên: Khẳng định nào sau đây sai? A. Đường thẳng  y  2 cắt đồ thị hàm số     y f x tại ba điểm phân biệt. B. Số nghiệm thực của phương trình 2 ( ) 5 0 f x   là 2. C.      3 2 3 4 f x x x . D. Hàm số nghịch biến trên 2;0. Lời giải: Câu A đúng vì      4 2 0. Câu C đúng vì với       3 2 3 4 f x x x thì thỏa                     2 0 0 0 2 0 0 4 ffff . Câu D đúng vì trên 0; 2 thì        f x x 0 0; 2 . Câu 10 (VDC): Cho hàm số    3 2 0 y ax bx cx d a      có đồ  thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?

Khung  ma trận  Chủ đề  1. Ứng dụng đạo hàm để kshs và vẽ  đồ thị của hàm số  2. Hàm số lũy thừa, hàm số mũ và  hàm số logarit  3. Nguyên hàm, tích phân và ứng  dụng  4. Số phức  5. Khối đa diện (phần thể tích)  6. Mặt nón, mặt trụ, mặt cầu  7. PP tọa độ trong khơng gian  8. Tổ hợp, xác suất  9. Cấp số cộng, cấp số nhân  10. PT - BPT   11. Véc tơ trong khơng gian, quan  hệ vng góc trong khơng gian  Tổng số câu  NB  3  Mức độ  TH  VD  4  2  Tổng  VDC  3  12  2  3  2  0  7  2  1  2  1  6  1  1  1  3  1  1  0  0  2  1  1  2  0  0  0  1  1  0  1  1  0  0  0  1  1  1  0  2  1  0  1  0  5  3  3  8  2  1  1  2  15  15  10  10  50    Chủ đề 1: Ứng dụng đạo hàm để kshs và vẽ đồ thị của hàm số  Câu 1 (NB): Khoảng đồng biến của hàm số  y  x3  3x   là  A  ; 2    2;       B  2;      C  ;0    2;       D  0;    Lời giải:   TXĐ:  D     y  3x  x  3x( x  2)   x  y     .   x  Lập bảng biến thiên, ta thấy hàm số đồng biến trên khoảng   2;0    x2 Câu 2 (NB): Cho hàm số  y   Trong các khẳng định sau, khẳng định nào là đúng.   x 1 A Hàm số nghịch biến trên        B Hàm số đồng biến trên từng khoảng xác định.    C Hàm số đồng biến trên                D Hàm số có duy nhất một cực trị Lời giải:   Ta có  y '   x  1 nên hàm số đồng biến trên từng khoảng xác định.  ( x  1) Câu 3 (NB): Cho hàm số  y  f  x   liên tục trên đoạn   2;3 ,  có bảng biến thiên như hình vẽ:    Khẳng định nào sau đây là khẳng định đúng ?  A Giá trị cực tiểu của hàm số là      B Hàm số đạt cực đại tại điểm  x    C Hàm số đạt cực tiểu tại điểm  x      D Giá trị cực đại của hàm số là    Câu 4 (TH): Cho hàm số  y  f  x   xác định, liên tục trên đoạn   3;3  và có đồ thị đường cong ở hình vẽ  bên. Mệnh đề nào dưới đây đúng trên đoạn   3;3 ?              A. Hàm số y  f ( x)  đạt giá trị lớn nhất tại x        B. Hàm số  y  f ( x)  đạt cực tiểu tại điểm x  1      C.  Hàm số  y  f ( x)  nghịch biến trên khoảng (3;0)     D.  Hàm số  y  f  x   nghịch biến trên khoảng   1;3    Câu 5 (TH): Cho hàm số  f  x   có đạo hàm  f   x    x  1  x  1   x   Hàm số  f  x   đồng biến  trên khoảng nào dưới đây?  A  ; 1     B.   1;1     C.  (2;  )     D (1; 2)   Lời giải :   Ta có bảng biến thiên của hàm số là:     Vậy hàm số  f  x   đồng biến trên khoảng  1;    Câu 6 (TH): Đồ thị hình bên là của hàm số nào?  y -1 O A.  y   x  x    x   B.  y  x  x    C.  y  x  x      D.  y  x  x    Lời giải:   Hình dáng đồ thị  là  của hàm số bậc 4  y  ax  bx  c   và đồ thị có bề lõm quay lên nên  a   , vậy  loại đáp án A.  Đồ thị hàm số giao với trục Oy tại điểm   0;   c   , vậy loại đáp án D.  x  Từ đồ thị hàm số đạt cực trị tại   ,    x  1 x    Đáp án đúng là B.  Đáp án C có  y '  x  x  y '     x   Câu 7 (TH): Đồ thị hàm số  y  x  x  24 x   có điểm cực tiểu và cực đại lần lượt là  A  x1 ; y1   và  B  x2 ; y2   Giá trị  y1  y2  bằng: A y1  y      B y1  y2      C y1  y2      D y1  y2  44   Lời giải:    x   y  24 Ta có  y  x  18 x  24  y       x   y  20 Lập bảng biến thiên suy ra điểm cực tiểu và cực đại lần lượt là  A  4; 20  ; B  2; 24    Khi đó  y1  y2  20  24    2x  Gọi  M  a; b  ,   a    là điểm thuộc đồ thị mà khoảng  x2 cách từ M đến hai tiệm cận là bằng nhau. Tìm  a  b :    Câu 8 (VD): Cho đồ thị hàm số  y  A. 0   B. 1   C. 2   D. 3  Lời giải:     Gọi  M  x; 2x   ,  theo giả thiết ta có phương trình:  x   x   . Từ đó tìm được M(-4; 4) x2 Câu 9 (VD): Cho hàm số  y  f  x  xác định, liên tục trên    và có bảng biến thiên:    Khẳng định nào sau đây sai?  A Đường thẳng  y  2  cắt đồ thị hàm số  y  f  x  tại ba điểm phân biệt.  B Số nghiệm thực của phương trình  f ( x )    là 2.  C f  x   x  x    D Hàm số nghịch biến trên   2;    Lời giải:   Câu A đúng vì  4  2     f '  2     f ' 0  Câu C đúng vì với  f  x   x  x   thì thỏa      f  2    f  4    Câu D đúng vì trên   0;   thì  f '  x   x   0;    Câu 10 (VDC): Cho hàm số  y  ax  bx  cx  d  a    có đồ   thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?      A a  0, b  0, c  0, d    B.  a  0, b  0, c  0, d    C a  0, b  0, c  0, d    D a  0, b  0, c  0, d    Lời giải: Ta có: y  ax  bx  cx  d  a   ;                                   y '  3ax  2bx  c   Gọi  x1 ; x2   là các  điểm cực trị của hàm số.     lim ax  bx  cx  d    x a  y  0  d    b  2b  Theo bài ra ta có:    x  x2  0 c0   3a  d  c  x1 x2  0  3a Câu 11 (VDC): Cho hàm số  y  f ( x)  có đồ thị  y  f ( x)  cắt trục Ox tại ba điểm có hồnh độ  a  b  c   như hình vẽ.   Mệnh đề nào dưới đây là đúng?    A f ( c )  f ( a)  f (b)     B f ( c )  f ( b)  f ( a) C f ( a)  f ( b)  f ( c )     D f ( b)  f ( a)  f ( c )   Lời giải: Đồ thị của hàm số  y  f ( x)  liên tục trên các đoạn   a; b   và  b; c  , lại có  f ( x)  là một nguyên hàm  của  f ( x)    y  f ( x)  y  Do đó diện tích của hình phẳng giới hạn bởi các đường    là:   x  a  x  b b S1   a b b f ( x) dx    f ( x)dx   f  x   f  a   f  b    a a Vì  S1   f  a   f  b     1     y  f ( x)  y  Tương tự: diện tích của hình phẳng giới hạn bởi các đường    là:   x  b  x  c c c c S2   f ( x) dx   f ( x)dx  f  x   f  c   f  b    b b b S2   f  c   f  b       Mặt khác, dựa vào hình vẽ ta có:  S1  S2  f  a   f  b   f  c   f  b   f  a   f  c       .  Từ (1), (2) và (3) ta chọn đáp án A.  Câu 12 (VDC): Đồ thị hàm số  y  a x  bx  c  cắt trục hoành tại    4  điểm  A , B , C , D   phân  biệt  như  hình  vẽ  bên.  Biết  rằng  AB  BC  CD , mệnh đề nào sau đây đúng?  A a  0, b  0,c  0,100b  9ac     B a  0, b  0,c  0,9b  100ac   C a  0, b  0,c  0, 9b  100ac   D a  0, b  0, c  0,100b  9ac     Lời giải:   Dựa vào hình dạng đồ thị:  a  0, x  y  c   có hai cực trị nên  ab   b     Giả sử hoành độ sắp thứ tự:   t2   t1  t1  t     b t1  t2  10t1   a Khi đó, ta có   t  t1  2 t`  t2  9t1        t t  9t  c  a  b2 2 100t1  a  100  b  9b  100ac    ac 9t  c  a Chủ đề 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit  1  4 2 Câu 13 (NB): Tính giá trị biểu thức  A    16  64    625   A. 14    B.12    C. 11      D.10  Lời giải:    1 1 1  4 2 A  16  64  54  4  2 26     12    625   Câu 14 (NB): Tính  P  log  log   log  log   10 A P      B P      C P        D P  1   Lời giải:         1    P  log  log   log  log  log    log    1   10  10   10  Câu 15 (TH): Cho  a  log 30 và  b  log 30  Tính  log 30 1350 theo a và b .  A  2a  b     B  2a  b     C  2a  b       D 1  2a  b   Lời giải:    Ta có:  log 30 1350  log 30 30.32.5   log 30  log 30   a  b   Câu 16 (TH): Đưa biểu thức  A  a a a  về lũy thừa cơ số   a  ta được biểu thức nào dưới đây?  A A  a 10   10 B A  a       C A  a       D A  a   Lời giải:   A a a a a 1 1   1  1   5 3   a 10   Câu 17 (TH): Tập nghiệm của phương trình  log x  log x  log x  log 20 x  là  A S  1     B S     C S  1;2       D S  2   Lời giải:    ĐK  x      PT   log x    1       log x   x     log log log 20    Câu 18 (VD): Hàm số  y  ln x  mx   có tập xác định  D    khi: A m      m2 B     m  2   C 2  m      D m    Lời giải:    Hàm số  y  ln  x  2mx   có tập xác định  D      x  2mx   0, x     m   '     2  m    a  1  Câu 19 (VD): Một bà mẹ Việt Nam anh hùng được hưởng số tiền là 4 triệu đồng một tháng (chuyển  vào tài khoản của mẹ ở ngân hàng vào đầu tháng). Từ tháng 1 năm 2018 mẹ khơng đi rút tiền mà để lại  ngân hàng và được tính lãi suất 1% trên một tháng. Đến đầu tháng 12 năm 2018 mẹ rút  tồn bộ số tiền  (gồm số tiền của tháng 12 và số tiền đã gửi từ tháng 1). Hỏi khi đó mẹ lĩnh về bao nhiêu tiền? (Kết quả  làm trịn theo đơn vị nghìn đồng)  A. 50 triệu 730 nghìn đồng.    B. 50 triệu 640 nghìn đồng C. 53 triệu 760 nghìn đồng.    D. 48 triệu 480 nghìn đồng.  Lời giải:   Gọi  Tn  là số tiền vốn lẫn lãi sau  n  tháng,  a  là số tiền hàng tháng gửi vào ngân hàng và  r  %   là lãi  suất kép. Ta có  T1  a 1  r  ,   T2   a  T1 1  r    a  a  r  1  1  r   a 1  r   a 1  r     T3   a  T2 1  r   a 1  r   a 1  r   a 1  r     ….   11 T11  a 1  r   1  r   1  r    a.S 11   S11  là tổng 11 số hạng đầu của cấp số nhân   un   với số hạng đầu  u1   r  1, 01  và công bội  q   r  1, 01      S11  u1 1  q11  1 q  1, 011  1, 0111   1,01   Vì tháng thứ 12 mẹ nhận được số tiền  T11  gửi từ tháng 1 và số tiền tháng 12 nên mẹ được nhận tổng số  tiền là:   1,011  1, 0111    50.730.000    1, 01 Chủ đề 3:  Nguyên hàm, tích phân và ứng dụng  Câu 20(NB): Họ nguyên hàm của hàm số y  x là  A  x dx  2x  C   ln   B.   x dx  x  C     C.   x dx  ln 2.2 x  C     D.   x dx  2x  C   x1 Câu 21(NB): Họ nguyên hàm của hàm số f ( x)  ( x  1)2  là  A F( x)  x  x  x  C     B F( x)  x3  x  x  C   C F( x)  x3  x  x  C       D F( x)  x  x  x  C   Câu  22(TH):  Biết một nguyên hàm của  hàm  số  y  f  x    là  F  x   x  x    Khi đó,  giá trị  của  hàm số  y  f  x   tại  x   là  A f  3      B f  3  10     C f  3  22     D f  3  30   Lời giải:   + Ta có:  y  f  x   F '( x)  x  +  f (3)  2.3   10      Câu 23(VD): Cho hàm số f ( x )  ( ax  b).cosx  Tìm  S  a  b   biết rằng   f ( x)dx  x.sin x  sin x  cosx  C   A S      B S      C S      D S  Lời giải: u  ax  b du  adx Đặt      dv  cos xdx  v  sin x   Khi đó   f ( x)dx  ( ax  b).sin x   a sin xdx  ( ax  b)sin x  acosx  C  ax.sin x  b sin x  a cos x  C    a  1, b   S  Câu 24(VD): Cho   π f ( x)dx  2017  Tính tích phân I   0 2017   2018   B I  2018   C I  2017 D I  Lời giải: A I  f (tan 2x) dx  cos x       Ta có:   cos x  cos 2 x  Đặt  t  tan x  dt  cos 2 x dx   1 2017 f (t )dt    4 Vậy  I   Câu 25(VDC): Câu lạc bộ bóng đá AS Roma dự định xây dựng SVĐ mới có tên là Stadio della Roma để làm sân nhà của đội bóng thay thế cho đội bóng Olimpico Hệ thống mái của SVĐ dự định được  xây dựng có dạng hai hình elip như hình bên với hình elip lớn bên ngồi có độ dài trục lớn là 146 mét,  độ dài trục nhỏ là 108 mét, hình elip nhỏ bên trong có độ dài trục lớn là 110 mét, độ dài trục nhỏ là 72  mét. Giả sử chi phí vật liệu là 100 dollar mỗi mét vng. Tính chi phí cần thiết để xây dựng hệ thống  mái sân.  A 98100 dollar B 98100 dollar C 196200 dollar  D 196200 dollar  Lời giải: Hình elip lớn có độ dài trục lớn là 146m, độ dài trục nhỏ là 108m    a  73 y2 x2 x2   ( E1 ) :    y  54      73 54 73  b  54 Hình elip nhỏ có độ dài trục lớn là 110m, độ dài trục nhỏ là 72m  a  55 y2 x2 x2    ( E2 ) :    y  36    b  36 55 36 55 Do tính đối xứng của hai elip nên ta có diện tích hệ thống mái của SVĐ là:  73 S  4(  54  55 x2 x2 dx  36  dx)  1962π( m3 )    2 73 55 Do đó chi phí cần thiết để xây dựng hệ thống mái sân bằng 100S =  196200π dollar  Chủ đề 4 Số phức  Câu 26(NB): Cho số phức  z   i  Tìm phần thực và phần ảo của số phức  z     A. Phần thực bằng 3, phần ảo bằng 2.  B. Phần thực bằng  3 , phần ảo bằng 2.  C. Phần thực bằng 3, phần ảo bằng  2   D. Phần thực bằng  3 , phần ảo bằng  2     z Câu 27(TH): Cho số phức  z  2i   khi đó   bằng  z  12i A.      13  6i B .    11  12i C .    13  6i D 11   Lời giải: 1 1 z z   2i   12i Có    z   z       z z z 13 2 z Câu 28(TH): Số phức  z  x  yi ( x , y  )  thỏa  x   yi   x   xi  i  Môđun của z bằng  A     B     C     D   Lời giải: x   yi   x   xi  i  x   yi   x   ( x  1)i x   x  x  x      z   2i y  x  y  x  y  z  12  2      Câu  29(VD):  Tìm  tham  số  thực  m  để  trên  tập  số  phức  phương  trình  z   13  m  z  34    có một  nghiệm là  z  3  5i :  A.  m        B.  m    C m    D.  m    Lời giải:           Thay  z  3  5i vào phương trình  z   13  m  z  34   ta được:  16  3i   13  m  3  5i   34   13  m  18  30i m7   3  5i Câu 30(VDC): Cho số phức z thỏa mãn  z    và z  z   có phần ảo khơng âm. Tập hợp các điểm  biểu diễn của số phức z là một miền phẳng. Diện tích S của miền phẳng này là  A.  S   B.  S  2 C.  S   D S    Lời giải: Đặt  z  a  bi  Tacó  z     a  1  b2   và  z  z  2bi  b    Tập  hợp  các  điểm  biểu  diễn  của  số  phức  z  là  một  miền  phẳng  giới  hạn  bởi  các  đường  y    x  1  x  x  và trục hoành.  2 Do đó diện tích là:  S  0    x  dx     Chủ đề 5: Khối đa diện (phần thể tích)  Câu 31(NB): Cho hình chóp tứ giác  S.ABCD  có đáy  ABCD  là hình vng cạnh  a ,  SA  ( ABCD )   và  SA  a  Thể tích của khối chóp  S.ABCD  bằng?  A a3    B a    C a3    a3   Câu 32(TH): Cho lăng trụ đều  ABC.A' B'C'  có cạnh đáy bằng  2a  Diện tích xung quanh bằng  3a  Tính thể tích V của khối lăng trụ.  A V  a     D B V  3 a   C V  a       D V  3a   Lời giải: Gọi h là chiều cao của khối lăng trụ ta có:  Sday  2a.a  3a   S xq  3.2a.h  3a  h  3a a 6a V  a 3.a  3a (đvtt)  Câu 33(VDC): Cho khối lập phương ABCD.A’B’C’D’ cạnh a . Các điểm E và F lần lượt là trung điểm  của C’B’ và C’D’. Mặt phẳng (AEF) chia khối lập phương đã cho thành hai phần. Gọi V1  là thể tích  khối chứa điểm A’ và V2  là thể tích khối chứa điểm C’. Khi đó  A.  25   47 D V2  là:    B.    C.  V1   17   25     17 Lời giải: Đường thẳng EF cắt A’D’ tại N ,Cắt A’B’ tại M  AN cắt DD’ tại P, AM cắt BB’ tại Q. Từ đó mặt phẳng (AEF) chia khối lập phương đã cho thành hai  khối là ABCDC’ QEFP AQEFPB’A’D’ A V  VABCD A ' B 'C ' D ' V3  VA.A ' MN   V4  VPFD ' N V5  VQMB ' E B  Q Do tính đối xứng của hình lập phương nên ta có V  V5   V3  B ’  M C  P  D’  A’  N F  E  C’  3a a3 ,V4  PD' D'F D' N    AA '.A ' M A ' N  72 V1  V3  2V4  Vậy D V1 V2  25a 47a   ,V2  V  V1  72 72 25   47 Chủ đề 6: Mặt nón, mặt trụ, mặt cầu  Câu  34(NB):  Tính  diện  tích  xung  quanh  S xq   của  hình  nón  trịn  xoay  có  đường  sinh  l  10cm ,  bán  kính đáy  r  5cm  .  A.  S xq  50 cm     B.  S xq  25 cm     C.  S xq  100 cm     50 cm   Câu 35(TH): Cắt hình trụ (T) bằng một mặt phẳng đi qua trục được thiết diện là một hình chữ nhật có  diện tích bằng  30cm  và chu vi bằng  26cm  . Biết chiều dài của hình chữ nhật lớn hơn đường kính mặt  đáy của hình trụ (T). Diện tích tồn phần của (T) là:  D.  S xq  69  cm2     B 69  cm    A C 23  cm          23  cm2  Lời giải: D Giả sử thiết diện là hình chữ nhật ABCD như hình vẽ khi đó  AD  CD  Ta có    AD  CD   26  AD  CD  13       AD.CD  30  AD.CD  30 Với  AD  CD,  giải hệ trên ta được  AD  10  h; CD   r    r   . Khi đó  69 10  2   cm2     Câu  36(VD):  Cho  hình  chóp  S ABCD   có  đáy  ABCD là  hình  thoi  cạnh  a , Stp  2 rh  2 r  2  ABC  1200 , tam giác  SAB  đều và nằm trong mặt phẳng vng góc với đáy. Tính bán kính mặt cầu  ngoại tiếp hình chóp  S ABC    41 a  A.    37 a  B   39 a  C   35 a D Lời giải: S d G C B 120° I M A a D   60  suy ra  ABD đều  ABC  120  BAD Do    DA  DB  DC  a  nên  D  là tâm đường tròn ngoại tiếp  ABC   Gọi M là trung điểm của AB , G là trọng tâm của  SAB   Qua  D  kẻ  d  ( ABCD ) , và qua  G  kẻ  d   ( SAB )   Gọi  I  d  d       Ta có  IA  IB  IC  ID   Khi đó  I  là tâm của mặt cầu ngoại tiếp hình chóp  S ABC có bán kính  a 3 39 R  IA  AD  MG  a   a      Chủ đề 7: Phương pháp tọa độ trong không gian  2 Câu 37(NB): Cho 2 điểm A(2; 4; 1), B(–2; 2; –3). Phương trình mặt cầu đường kính AB là:  A x  ( y  3)2  ( z  1)2     B x  ( y  3)2  ( z  1)2    C x  ( y  3)  ( z  1)     D x  ( y  3)  ( z  1)2    Lời giải:   I là tâm cầu, khi đó do AB là đường kính nên I là trung điểm AB.  I  0;3; 1    IA  2;1;   IA  2  12  2   Nên bán kính  R    2 Vậy phương trình mặt cầu:  x   y  3   z  1     2 Câu 38(NB): Cho ba điểm  A  3,1,  ; B  2,1, 1 ; C  x , y , 1  Tính  x , y  để  G  2, 1,    là trọng  3  tâm tam giác ABC  A x  2, y  B x  2, y  1   C x  2, y  1 D x  1, y  5   Lời giải:     3   x 2   x  1   y  1   Ta có G là trọng tâm tam giác ABC thì      y  5   1   3  Câu  39(NB):  Trong  không  gian  với  hệ  trục  tọa  độ  Oxyz.    Phương  trình  mặt  phẳng  đi  qua  điểm   A(1; 2; 0)  có vetơ pháp tuyến  n  (2; 1; 3)  là  A B C D x  y     x  y  z     x  y  3z    x  y  3z         Câu 40(TH): Trong không gian với hệ toạ độ Oxyz,mặt phẳng (P) qua  điểm  A  1; 1; 1  và vng góc   đường thẳng  d : x-1 y - z   có phương trình là:  -1 A  x  y  z     B x  y         C x  y  z     D x  y     Lời giải:        Ta có, mặt phẳng (P) vng góc đường thẳng d nên mặt phẳng (P) có vectơ pháp tuyến  n  1; 2; 1   Mặt phẳng (P) đi qua điểm  A  1;1; 1   Vậy phương trình mặt phẳng (P) là:   x  1   y  1   z  1   x  y  z    .   Câu  41(TH):  Cho  đường  thẳng  đi  qua  điểm  A  1; 4; 7    và  vng  góc  với  mặt  phẳng     : x  2y  2z    có phương trình chính tắc là:  y4 z7    2 y4 z7 B x    2   x1 z7  y4 C   D x   y   z    Lời giải:   A x          VTPT của mặt phẳng      là  n   1; 2; 2   Đó cũng là vectơ chỉ phương của đường thẳng           Kết  hợp  với  giả  thiết  đi  qua  điểm  A  1; 4; 7    Suy  ra  phương  trình  chính  tắc  của     là:  x 1 y  z 7     2 Câu 42(VD): Trong khơng gian Oxyz, cho tam giác ABC vng cân tại C và có các đỉnh  A  (Oxz) ,  B(2; 3;1)  và  C(1;1; 1)  Tọa độ điểm A là:  A A(1; 0; 1)   B A(1; 0;1)   C A(1; 0; 1)     D A(1; 0;1)   Lời giải:         CA  CB Gọi A( a; 0; c) Ta có:      suy ra  a  c     CA.CB  Câu 43(VDC): Trong không gian với hệ tọa độ  Oxyz , cho tứ diện  ABCD  với  A  2;1; 1 ,  B  3; 0;1 ,  C  2; 1;  , điểm  D  thuộc  Oy  và thể tích của tứ diện  ABCD  bằng   Tọa độ của đỉnh  D  là:  A D  0; 7;        B D  0; 8;     C D  0; 7;   hoặc  D  0; 8;    D D  0; 7;   hoặc  D  0; 8;    Lời giải:   Ta có:      D  Oy  D  0; y;           AB   1; 1;  , AC   0; 2;    AB, AC    0; 4; 2  , AD   2; y  1;1         AB, AC  AD 4 y  4 y   y  7   V ABCD   , V ABCD   5 6 y  Câu 44(VDC): Trong không gian  Oxyz ,  cho điểm  M  2; 1;  , mặt phẳng   : x  y  z    và mặt  cầu   S  : x  y  z  x  y  z  18    Phương  trình  đường  thẳng     đi  qua  M   và  nằm  trong     cắt mặt cầu  S   theo một đoạn thẳng có độ dài nhỏ nhất là: x  y 1 z 1     2 1 x  y 1 z 1   B .  2 x  y 1 z 1   C .  3 x  y 1 z 1 D .    1 2 Lời giải: A         Mặt cầu   S   có tâm  I  3; 3;   và bán kính  R   d I ,     R  Suy ra mặt cầu   S  cắt mặt  phẳng     theo một đường tròn.  Ta có điểm  M    ,  IM  14  R  nên điểm  M  nằm trong mặt cầu   S     Gọi  H  là hình chiếu vng góc của  I  lên   P   H  1; 1;    Để đường thẳng    đi qua  M  và nằm trong     cắt mặt cầu   S   theo một đoạn thẳng có độ dài nhỏ nhất thì    MH   Từ đó suy ra    có véctơ chỉ phương     u  n , MH    1; 2;1     Vậy   : x  y 1 z 1     2     I       M   H Chủ đề 8: Tổ hợp, xác suất  Câu  45(NB):  Có  3  kiểu  mặt đồng  hồ  đeo  tay  (vng,  trịn,  elip)  và  4  kiểu  dây  (kim  loại,  da,  vải  và  nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây? A B C 12 D 16 Câu 46(VDC): Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn  khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 mơn thi và cả 4 lần thi đều thi tại một phịng  duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi  thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí.  A 253    1152   B 899   1152   C   75   D 26   35 Lời giải:   Không gian mẫu là số cách ngẫu nhiên chỗ ngồi trong   lần thi của Nam Suy ra số phần tử của không gian mẫu là    244   Gọi  A  là biến cố  '' 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí ''  Ta mơ tả khơng gian  của biến cố  A  như sau:  ●  Trong   lần có   lần trùng vị trí, có  C42  cách.  ●  Giả sử lần thứ nhất có  24  cách chọn chỗ ngồi, lần thứ hai trùng với lần thứ nhất có   cách chọn  chỗ ngồi. Hai lần cịn lại thứ ba và thứ tư khơng trùng với các lần trước và cũng khơng trùng nhau nên  có  23.22  cách.   Suy ra số phần tử của biến cố  A  là  A  C42 24.23.22   Vậy xác suất cần tính  P  A  A C42 24.23.22 C42 23.22 253       244 243 1152  Chủ đề 9: Cấp số cộng, cấp số nhân  Câu 47(NB): Trong các dãy số sau, dãy số nào là một cấp số cộng?  A 1  ;3;7;11;15;    B.  1;3;6;9;12;  C.  1;2;4;6;8;     D.  1;3;5;7;9;  Chủ đề 10: Phương trình, bất phương trình  Câu  48(VDC):  Tìm  tất  cả  các  giá  trị  của  tham  số  m  để  bất  phương  trình  sau  nghiệm  đúng  với  mọi  x  0;1     2( m1) x   m  m   log( m2  m  2)  log ( m  1)x    (1)  A.   , 1   2,          B.   , 1   2,      C.  1  , 1   2,      D.  1  , 1   2, 3     Lời giải:        m  m   Đk:     ( m  1) x   Bất phương trình (1) tương đương với     2( m1) x   log ( m  1)x    2m m  log( m2  m  2)  (2)  Xét hàm số f(x) = 2x + log(x) đồng biến với x > 0  Bất phương trình (2)được viết dưới dạng   f ( m  1)x    f ( m2  m  2)  ( m  1)x   m  m       g( x)  ( m  1)x  m2  m    (3)  Vậy bất phương trình (1) nghiệm đúng với mọi  x   0;1    m2  m       g( x)  ( m  1)x  m  m   0x   0; 1  m   m  1   m   2m3      g(0)     m  1     1   m  1  g(1)   1   m     Vậy với  m   , 1   2,   thì bất phương trình nghiệm đúng với mọi  x   0;1   Chủ đề 11: Véc tơ trong khơng gian, quan hệ vng góc (khoảng cách)  Câu 49(TH): Cho hình chóp  S ABC  có đáy  ABCD  là hình vng cạnh  a , tâm  O Cạnh bên  SA  2a   và vng góc với mặt đáy   ABCD  Gọi    là góc giữa  SO  và mặt phẳng   ABCD   Mệnh đề nào sau  đây đúng?  A.  tan   2      B.    600     C.  tan       D.    450   Lời giải:   Vì  SA   ABCD  nên  hình  chiếu  vng  góc  của  SO   trên  mặt  đáy   ABCD    là  AO Do  đó     SO, ABCD    SO, OA  SOA   Trong tam giác vng  SAO, ta có  tan SOA SA  2   OA Vậy  SO  hợp với mặt đáy   ABCD   một góc nhọn    thỏa mãn  tan   2     60,  cạnh bên  SA  vng  Câu 50(VD): Cho hình chóp  S ABCD  có đáy là hình thoi cạnh  3a, ABC góc với đáy, góc giữa (SCD) và đáy là 60  Gọi  G  là trọng tâm  ABC  Tính khoảng cách từ điểm  G   đến mặt phẳng  (SCD)   9a A     B 3a     C 3a     D a   Lời giải:   d (G,( SCD)) IG    d (A,(SCD)) IA IM MC 1 Có  MC / / A D     IM  IA   IA AD 2 IG  AG  AM  AI     3 IA  AE  CD Kẻ    d ( A,( SCD))  AH     AH  SE * Tính AH:     60  ABC đều cạnh  3a   ABC  cân có  ABC S * Gọi  I  AG  CD   AE  3a     60          Góc giữa (SCD) và (ABCD) là  SEA 9a  AH  AE.sin 60    3a  d (G,( SCD))  AH      H A G B M D E O C I  

Ngày đăng: 08/02/2024, 17:40

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w