MA TRẬN ĐỀ KIỂM TRA HỌC KỲ II MƠN TỐN – NĂM HỌC: 2010-2011 Xem thêm Website VnTeach.Com https://www.vnteach.com Chủ đề Hệ hai phương trình bậc hai ẩn Phương trình bậc hai ẩn Góc với đường trịn Hình trụ – Hình nón – Hình cầu Nhận biết Thông hiểu TN TL TN TL 1.0 2 2.0 2.0 1 1.0 0.5 1.0 Vận dụng TN TL Tổng 1.0 1.5 5.5 1.0 2.5 1.0 10 Tổng 5.0 2.5 2.5 10.0 TRƯỜNG THCS NGUYỄN BÁ NGỌC ĐỀ CHÍNH THỨC ĐỀ KIỂM TRA HỌC KỲ II NĂM HỌC 2010 – 2011 Mơn : TỐN Thời gian làm : 90 phút (không kể thời gian phát đề) Bài 1: (2 điểm) Khơng dùng máy tính, giải phương trình hệ phương trình sau: a) x x 0 ; x y 1 3 x y 12 b) 2 Bài : (2điểm) Cho phương trình x 2m 1 x m , m tham số a) Với giá trị m phương trình có nghiệm? b) Gọi x1 , x2 hai nghiệm phương trình Tìm m để 3x1 x2 5 x1 x2 Bài 3: (2,5điểm) Giải tốn cách lập phương trình hệ phương trình Một tổ cơng nhân phải làm 144 dụng cụ Do công nhân chuyển làm việc khác nên người lại phải làm thêm dụng cụ Tính số cơng nhân lúc đầu tổ suất người Bài 4: (3,5điểm) Cho hình vng ABCD, lấy điểm M cạnh BC (M khác B C) Qua B kẻ đường thẳng vng góc với đường thẳng DM H, kéo dài BH cắt đường thẳng DC K a) Chứng minh tứ giác BHCD nội tiếp đường trịn Xác định tâm I đường trịn b) Chứng minh KM DB c) Chứng minh KC.KD KH KB d) Giả sử hình vng ABCD có a Tính thể tích hình nửa hình trịn tâm I quay vịng quanh đường kính -HẾT -DUYỆT CỦA NHÀ TRƯỜNG ( Đã ký đóng dấu) GIÁO VIÊN ( Đã ký) Võ Văn Khương Đỗ Quang Minh HƯỚNG DẪN CHẤM VÀ THANG ĐIỂM MÔN TOÁN HỌC KỲ II – NĂM HỌC 2010 -2011 Bài 1a (1,0đ) Nội dung Điểm 0,5 x x 0 Ta có 49 120 169 Vậy PT cho có hai nghiệm phân biệt: x1 169 169 2 ; x2 10 10 1b x y 1 x y 2 7 x 14 (1,0đ) 3x y 12 3x y 12 3x y 12 0,5 0,25 x 2 x 2 3.2 y 12 y Vậy hệ PTđã cho có nghiệm x; y 2; 3 2 2a Phương trình x 2m 1 x m có nghiệm 0 (1,0đ) 2m m 0 4m 0 4m 7 m 0,25 0,25 0,25 0,25 0,25 Vậy với m PT cho có nghiệm 2b Với m , PT cho có nghiệm Theo hệ thức Viét, ta có: (1,0đ) x1 x2 2m x1.x2 m 2 Theo đề : 3x1 x2 5 x1 x2 m 5 2m 1 3m 10m 0 m1 2 (nhận); m1 (không thỏa điều kiện) Vậy với m1 2 3x1 x2 5 x1 x2 (2,5đ) Gọi x (người) số công nhân tổ lúc đầu Điều kiện x nguyên x Số dụng cụ công nhân dự định phải làm là: 0,5 144 (dụng cụ) x Số công nhân thực tế làm việc là: x (người) 144 Do công nhân thực tế phải làm là: (dụng cụ) x 144 144 4 Theo đề ta có phương trình: x x Rút gọn, ta có phương trình : x 3x 108 0 9 432 441 441 21 21 21 x1 12 (nhận) ; x2 (loại) 2 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,5 Vậy số công nhân lúc đầu tổ 12 người 4a (1,0đ) 0,25 B A a) Chứng minh tứ giác BHCD nội tiếp Ta có BCD 900 (vì ABCD hình vng) I BHD 900 (vì BH DM ) H, C thuộc đường trịn đường kính BD Vậy tứ giác BHCD nội tiếp đường tròn D đường kính BD, có tâm I trung điểm đoạn BD 0,25 H M C 0,25 0,25 0,25 K 4b b) Chứng minh KM DB DH BK ( gt ) (0,5đ) Trong KBD có: KM DB (đường cao thứ ba) 0,5 4c c) Chứng minh KC.KD KH KB 900 ; K góc chung (1,0đ) Xét KCB KHD có: C H KCB KHD (g-g) 0,25 0,25 BC DK ( gt ) KC KB KH KD KC.KD KH KB (đpcm) 4d d) Nửa hình trịn tâm I quay vịng quanh đường kính, ta BD (1,0đ) hình cầu có bán kính: R 0,25 0,25 0,25 0,25 Trong đó: BD a a a R a 0,25 Vậy thể tích hình cầu là: V R3 2 a a (đơn vị thể tích) 0,25 Chú thích: - Một số tốn học sinh làm khác điểm số khơng vượt q thang điểm - Hình vẽ 4, phục vụ giải tốn, khơng có điểm số cho hình vẽ - Điểm kiểm tra tổng điểm bài, phần làm tròn đến 0,5đ -HẾT SẢN PHẨM CỦA CỘNG ĐƠNG GV TỐN VN LIỆN HỆ: 0386536670 GROUP FB: https://www.facebook.com/groups/316695390526053/ CHỈ CHIA SẺ VÀ HỖ TRỢ THẦY CÔ TRÊN FB NHƯ TRÊN , ZALO DUY NHẤT Mọi hành vi kêu gọi mua quyền, mua chung, góp quỹ vào group zalo lừa đảo chia sẻ trái phép sản phẩm nhóm