1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi tuyển sinh vào 10 môn toán tỉnh đồng nai năm học 2021 2022

10 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 599 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐỒNG NAI ĐỀ THI CHÍNH THỨC ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2021 – 2022 Mơn thi: TỐN Thời gian làm bài: 120 phút (Đề gồm có 01 trang, có 05 câu) Câu (2,0 điểm) 1) Giải phương trình x  3x  10 0 2) Giải phương trình 3x  x  0 2 x  y 1 3) Giải hệ phương trình   x  y 4 Câu (2,25 điểm) 1) Vẽ đồ thị hàm số ( P) : y x 2) Tìm giá trị tham số thực m để Parabol ( P) : y x đường thẳng (d) : y 2 x  3m có điểm chung 3) Cho phương trình x  5x  0 Gọi x1 ; x2 hai nghiệm phương trình Khơng giải phương trinh, hăy tính giá trị biểu thức Q x12  x22  x1 x2  x x x    : x (với x  0; x 4  Câu (1,0 điểm) Rút gọn biểu thức A  x   x Câu (1,75 điểm) 1) Hằng ngày bạn Mai học xe đạp, quảng đường từ nhà đến trường dài km Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đến trường xe máy với vận tốc lớn vận tốc di xe đạp 24 km / h , thời điểm khởi hành ngày Mai đến trường sớm hon 10 phút Tinh vận tốc bạn Mai học xe đạp 2) Cho ABC vuông tai A , biết AB a , AC 2a (với a số thực dương) Tính thể tích theo a hình nón tạo thành quay ABC vòng quanh cạnh AC cố định Câu (3,0 điểm) Cho ABC có ba góc nhọn ( AB  AC ) Ba đường cao AD , BE, CF cắt H 1) Chúng minh tứ giác BFEC nội tiếp Xác định tâm O đường tròn ngoại tiểp tứ giác BFEC 2) Gọi I trung điểm AH Chứng minh IE tiếp tuyến đường tròn (O) 3) Vẽ CI cẳt đường tròn (O) M ( M khác C ), EF cắt AD K Chứng minh ba diể B , K , M thẳng hàng -HẾT - HƯỚNG DẪN GIẢI Câu (2,0 điểm) 1) Giải phương trình x  3x  10 0 Lời giải Phương trình: x  3x  10 0 có: a 1 , b 3 , c  10 Ta có:  32  1 (  10) 49 Phương trình có hai nghiệm phân biệt: x1    49   49 2 , x2   1 1 2) Giải phương trình 3x  x  0 Lời giải Giải phương trình: 3x  x  0 (1) Đặt t x , điều kiện ( t 0 ) Khi phương trình cho trở thành: 3tt2   0 (2) Ta có:  2  3 (  5) 64 Phương trình (2) có hai nghiệm phân biệt: t1    64 1 (thỏa điều kiện) 3 t2    64  (không thỏa điều kiện) 3 Với t 1  x 1  x 1 x  Tập nghiệm phương trình S {1;  1} 2 x  y 1 3) Giải hệ phương trình   x  y 4 Lời giải 2 x  y 1    x  y 4 2 x  y 1   2 x  y 8  y    2 x  y 1  y 1   x 2 Vậy nghiệm hệ phương trình  2;1 Câu (2,25 điểm) 1) Vẽ đồ thị hàm số ( P) : y x Lời giải Tập xác định: D  a 1  , hàm số đồng biến x  , hàm số nghịch biến x  Bảng giá trị x y x 2 0 1 1 Đồ thị hàm số y x đường cong Parabol qua điểm O , nhận Oy làm trục đối xứng, bề lõm hướng lên 2) Tìm giá trị tham số thực m để Parabol ( P) : y x đường thẳng (d) : y 2 x  3m có điểm chung Lời giải Xét phương trình hồnh độ giao điểm ( P),(d) ta được: x 2 x  3m  x  2x  3m 0 (1) Để ( P) cắt (d) có điểm chung chi (1) có nghiệm kép   0   3m 0  m  Vậy m  thỏa mãn yêu cầu toán 3) Cho phương trình x  5x  0 Gọi x1 ; x2 hai nghiệm phương trình Khơng giải phương trinh, hăy tính giá trị biểu thức Q x12  x22  x1 x2 Lời giải Vì x1 , x2 hai nghiệm phân biệt phương trình áp dụng hệ thức Vi-et với  x1  x2  phương trình x  5x  0 ta có:   x1 x2  2 Ta có: Q x12  x22  x1x2  x1  x2   x1 x2  x1 x2  x1  x2   x1 x2  Q (  5)2  4(  4) 9 Vậy Q 9  x x x    : x (với x  0; x 4  Câu (1,0 điểm) Rút gọn biểu thức A  x   x Lời giải  x x x  A   : x  x x    ( x  2)( x  2) x ( x  2)  A    : x  x  x   A ( x   x  2)  A 2 x  x x 2 Vậy với x  0, x 4 A 2 Câu (1,75 điểm) 1) Hằng ngày bạn Mai học xe đạp, quảng đường từ nhà đến trường dài km Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đến trường xe máy với vận tốc lớn vận tốc di xe đạp 24 km / h , thời điểm khởi hành ngày Mai đến trường sớm hon 10 phút Tinh vận tốc bạn Mai học xe đạp Lời giải Gọi vận tốc Mai học xe đạp x( km / h)( x  0) Thời gian Mai xe đạp hết quẫng đường km ( h) x Hôm nay, Mẹ chở Mai đến trường xe máy với vận tốc x  24( km / h) Thời gian xe máy hết quầng đường km ( h) x  24 Vi củng thời điểm khởi hành ngày Mai đến trường sớm 10 3  phút  h nên ta có phương trình:  x x  24  18( x  24)  18 x x( x  24)  x  24 x  432 0 Ta có  12  432 576  nên phương trinh có nghiệm phân biệt  x  12  576 12 (tm)   x  12  576  36( ktm) Vậy vận tốc Mai học bẳng xe đạp 12 km / h 2) Cho ABC vuông tai A , biết AB a , AC 2a (với a số thực dương) Tính thể tích theo a hình nón tạo thành quay ABC vòng quanh cạnh AC cố định Lời giải Hình nón tạo thành quay ABC vòng quanh cạnh AC cố định có đường cao h  AC 2 a bán kinh đường tròn đáy R  AB a 1 2 a Vậy thể tích khối nón tạo thành V   R h   a 2 a  3 Câu (3,0 điểm) Cho ABC có ba góc nhọn ( AB  AC ) Ba đường cao AD , BE, CF cắt H 1) Chứng minh tứ giác BFEC nội tiếp Xác định tâm O đường tròn ngoại tiểp tứ giác BFEC 2) Gọi I trung điểm AH Chứng minh IE tiếp tuyến đường tròn (O) 3) Vẽ CI cẳt đường tròn (O) M ( M khác C ), EF cắt AD K Chứng minh ba điểm B , K , M thẳng hàng Lời giải A E I F H B D O C 1) Chứng minh tứ giác BFEC nội tiếp Xác định tâm O đường tròn ngoại tiếp tứ giác BFEC  Vì CF  AB nên CFB 90  Vì BE  AC nên BEC 90   Xét tứ giác BEFC có: E , F hai đỉnh kề nhìn cạnh BC CFB BEC 90 nên tứ giác BFEC nội tiếp Tâm O đường tròn ngoại tiếp tứ giác BFEC trung điểm cạnh BC 2) Gọi I trung điểm AH Chứng minh IE tiếp tuyến đường tròn (O) A E I F H B D O C Xét AEH vng H , có EI đường trung tuyến ứng với cạnh AH nên EI  AH IH   Suy ra: IEH cân I  IEH IHE   Mà IHE (Hai góc đối đỉnh) BHD   Suy ra: IEH (1) BHD Ta lại có: OB OE R  OEB cân O   (2)  OBE OEB     Từ (1) (2), ta có: IEH  OEB BHD  OBE   Mặt khác: BHD  OBE 90 (vì BHD vng D )      Suy ra: IEH  OEB BHD  OBE 90 hay OEI 90  OE  EI Và E  (O) Do đó: IE tiếp tuyến đường tròn (O) 3) Vẽ CI cắt đường tròn (O) M ( M khác C ), EF cắt AD K Chứng minh ba điểm B , K , M thẳng hàng A E I M K F H B D O C Ta có: góc BMC góc nội tiếp chắn nửa đường trịn nên góc BMC = 90 độ  BM  IC Xét IEK IDE có:  góc chung EIK   ( ECF  IDE IEK ) Do đó: IEK ∽ IDE (g.g)  IE IK   ID.IK IE ID IE Mặt khác: IM.IC IE2 (Bạn đọc tự chứng minh)  ID.IK IM.IC  IM IK  ID IC Xét tam giác IMK tam giác IDC có: Góc MIK góc chung IM IK  ID IC  IMK ∽ IDC    KMI CDI 90  KM  IC BM  IC    B , M , K thẳng hàng KM  IC 

Ngày đăng: 30/10/2023, 14:21

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w