1. Trang chủ
  2. » Giáo án - Bài giảng

024 đề thi hsg toán 9 tỉnh nam định 2018 2019

11 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 352,4 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO NAM ĐỊNH KỲ THI CHỌN HỌC SINH GIỎI TỈNH KHỐI NĂM HỌC 2018-2019 MƠN THI: TỐN ĐỀ THI CHÍNH THỨC Câu (3,0 điểm) P Rút gọn biểu thức   10  1 7 94 89  28 10 z z2 1   y y x , y , z Xét ba số thực dương thỏa mãn z  z  Chứng minh xz  xy  x yz  1  1 yz  y  zx  z  Câu (5,0 điểm) Giải phương trình x3  x  x  x  2 x4   15   x  y    x  y  1    xy x y   x  y  x  y   x 13 Giải hệ phương trình  Câu (3,0 điểm) Cho đa thức P( x) Q ( x) thỏa mãn P( x)   Q  x   Q   x   x   Biết P 3P  P    hệ số P( x) số nguyên không âm P   0 Tính    Tìm tất cặp số nguyên  x; y  thỏa mãn phương trình: x y  1  x   y   xy  y   x  y  2  x  1  y  1 Câu (7,0 điểm) Cho tứ giác ABCD nội tiếp đường tròn  O; R  , vẽ đường tròn  O '; R ' tiếp xúc với cạnh AD H, tiếp xúc với cạnh BC G tiếp xúc với đường tròn  O  (điểm M thuộc cung CD không chứa điểm A) Vẽ đường thẳng tt ' tiếp tuyến chung M hai đường tròn (O) ( O ') (tia Mt nằm nửa mặt phẳng bờ đường thẳng MA chứa điểm D)    Chứng minh DHM DMt  AMH MH , MG tia phân giác góc AMD & BMC  Đường thẳng MH cắt đường tròn (O) E ( E khác M ) Hai đường thẳng HG CE cắt   EIM I Chứng minh EHI Chứng minh đường thẳng HG qua tâm đường tròn nội tiếp tam giác ACD Câu (2,0 điểm) Cho ba số thực dương a, b, c Chứng mnh : 1 1 1 1        2 c. c  a  3b   c a. a  b  3c   a b  b  c  3a   b a b c  Cho đa giác có 10 đỉnh hình vẽ bên (bốn đỉnh A, B, C , D B, C , D, E C , D, E , F … J , A, B, C gọi đỉnh liên tiếp đa giác) Các đỉnh đa giác đánh số cách tùy ý số nguyên thuộc tập hợp  1;2;3;4;5;6;7;8;9;10 (biết đỉnh đánh số, số đánh đỉnh khác nhau) Chứng minh ta ln tìm đỉnh liên tiếp đa giác đánh số mà tổng số lớn 21) J B A C I D H G F E ĐÁP ÁN Câu 1.Ta có: Và   10    89  28 10   10 1 P 2  5   7    ;9    2  , Do đó:     10  1 2  2 5  1 1 2   10 2     5 10 5  Vậy P  ta có: z z2 1 xz z2 1  z     y y z  z2 1 y z  z2 1 xz   xyz  z  z    z   z  xyz 1 Ta có: 1   xy  x yz  xy  x xyz  xy  x  1  yz  y  x Và x   yz  y  1  zx  z  xy x x  xyz  xy  x  xy  x  xy   zx  z   xy x yz  xyz  xy  xy x   xy Do đó:  xy  x  xy 1 x     1 yz  y  zx  z  xy  x  1  xy  x x   xy  xy  x yz  Vậy 1  1 yz  y  zx  z  x, y, z  thỏa mãn z z2 1   y z  z2 1 y xz Câu Điều kiện xác định : x  R 1  x   0x  ; x   0x  , x  x   x     0x   4  +)Nhận xét Do từ (1) suy x   x 1  Phương trình (1) 2 5  x4   x    x 15  x x2 2 5 2 4 5 2  2  x  1   x   x   x  1  x  x   x 15  x x x 15  x  x a x  a 2 x Đặt   Khi ta có phương trình  15  a  1 4 5a a   45  a  1 16a  a    16a  109a  90a  45 0   a  3  16a  48a  35a  15  0   a 3 16a  48a  35a  15  a 2 +)Với a 3 ta có: Vậy S  1;2 x 3  x  x  0  x   x 1(tm)  x 2(tm)   xy 0   x  y 1  Điều kiện  x 0 Phương trình   1   x  y xy (*) 1 2  x  y  1  x  y     x  y  1 0 4 0  x y xy xy  x  y  1  x  y  1   x  y  1 0  xy x y x  x  y  1  y2  x  y  xy  x  y  0  x  y  0  y 1  x (vì với x, y thỏa mãn điều kiện (*) ta có: x  y  x  y  0) Thay y 1  x vào phương trình thứ (2) hệ phương trình ta phương trinh: x    x   13  x 0  x  x   x 0   x  x  x  x    x  1   2x   x     x  3  x x   2x   x    x  x  1 )2 x   x  x    x   0(VN vi x 0)  2  x 2   17  33  x    x 2 17  33   x  )4  x  x      x 8   x  x 4 x  17 x  16 0      x 17  33   + 17  x 33  8 Với thỏa mãn điều kiện (*)  17  33 33   ;  x; y    8   Vậy hệ phương trình cho có nghiệm Câu 33  y P  0  Từ giả thiết ta có: 1 P  1   Q  1  Q    Q    Q  1  0  1  2 (2) Từ (1) (2) suy P  1 0 n P x  a  a x  a x   a x , a0 , a1 , a2 , , an số nguyên không   n Giả sử âm suy a0 a1 a2  an 0 P  x  0 x    P  3P  3  P    0 Vì P( x) 0x    P(2) 0, P(3) 0, đó: 3P  3  P   0 Ta có :  x  y  1  x   y   xy  y   x  y  2  x  1  y  1 2   x  y    xy  y  x  y   2  x  y  xy  1   x  y   y  x  y   2  x  y     x  y   x  y    y  x  y   3   x  y    x  y  y  3 Vì x, y  nên x  y  2; x  y  y ước  x  y  1   x  y  y    y 0   x  y    x 3   y 0   x 3   x  y    y 4   y       x  y  y   x  y 1   x     y 2  x  y     x  y  y    y 0  x     x  y   y 0   x 7   x  y  3  y 4   y       x  y  y 1  x  y 5   x 3    y 2 Vậy cặp số nguyên  x; y   3;0  ;  3;   ;   1;2  ;  7;   ;  3;2  ;   1;0  Câu    Xét HAM ta có DHM DAM  AMH (1)   Xét đường trịn (O) ta có : DAM DMt (2)    Từ (1) (2) ta có : DHM DMt  AMH   Vì Mt DH tiếp tuyến  O ' nên DHM HMt (3)    Và HMt HMD  DMt (4)  Từ (1), (2), (3), (4) suy AMH HMD suy MH phân giác AMD Chứng minh tương tự ta có MG phân giác góc BMC           HGM HMt  sd HM ECM  EMt     sd EM  O ' O         Xét có , xét có      HGM ECM hay IGM ICM  tứ giác IMCG nội tiếp    Ta có EHI EHA  AHG (4) 0       Và EIM 180  MIC 180  MGC MGB MGH  BGH (5)   Lại có AHG BGH (6) (vì AH BG tiếp tuyến  O ' )    Và EHA DHM MGH          Từ (4), (5), (6), (7) suy EIM MGH  BGH EHA  AHG  EHI EIM  Ta có CE tia phân giác ACD  * (vì EM tia phân giác AMD  sdEA sdED)   EIM Ta có: EHI (chứng minh câu 4.2),     EHI EIM có HEI MEI EIM EHI  EHI EIM ( g.g )  EI EH   EI EH EM (8) EM EI    DMH Lại có : EDH (vì EM tia phân giác AMD  sdEA sdED)     EHD EDM có HED MED EDH DMH  EHD EDM ( g g )  ED EH   ED EH EM (9) EM ED   Từ (8) (9) suy EI ED  EID cân E  EDI EID  10   EDI   sdEA  sdAK  (11) DI cắt (O) K, ta có:  EID   sdED  sdKC  (12) Và  Từ (10), (11), (12) sdEA sdED  sdAK sdKC  DK tia phân giác ADC  ** Từ (*), (**) suy I tâm đường tròn ngoại tiếp tam giác BCD Rõ ràng, HG qua I tâm đường tròn nội tiếp BCD Câu 1.Áp dụng BĐT  1 1 1  1 1    9       x, y , z  xyz  x y z  x y z  x  y  z  1 1 1       x, y , z   y z xy yz xz Và x 1 1 1  2 2   , ab bc ca bất đẳng thức (1) ta cần chứng minh Vì a, b, c  ta có : a b c 1 1 1         2 ac  3bc  2c ab  3ac  2a bc  3ab  2b  ab bc ac  Ta có   2  (2) 1 1 a b c       2 ac  3bc  2c ab  3ac  2a bc  3ab  2b  abc  ab bc ac a b c    a  3b  2c b  3c  2a c  3a  2b Ta có: ab ab ab  1   ab ab a           a  3b  2c  a  c    b  c   2b  a  c b  c 2b   a  c b  c  ab  ab ab a      Vậy a  3b  2c  a  c b  c  (3) Tương tự ta có: bc  bc bc b      (4) b  3c  2a  b  a c  a  ac  ac ac c      (5) c  3a  2b  c  b a  b  Cộng theo vế  3 ,   ,   ta có: ab bc ac  ab  bc ab  ac ac  bc a  b  c  a  b  c         a  3b  2c b  3c  2a c  3a  2b  a  c c b a b  Vậy BĐT (2) BĐT (1) Gọi x1 , x2 , x3 , , x10 số phân biệt đánh liên tiếp cho 10 điểm phân biệt thuộc đường tròn (O) , x1 , x2 , x3 , , x10   1;2;3;4;5;6;7;8;9;10 Giả sử ngược lại khơng tìm đỉnh thỏa mãn khẳng định toán Khi ta có:  x1  x2  x3  x4 21  x  x  x  x 21   x3  x4  x5  x6 21    x10  x1  x2  x3 21 Từ suy  x1  x2  x3   x10  10.21 210 10.11 x1  x2  x3   x10 1     10  55 Mặt khác ta lại có : Suy 4.55  210  220  210 (vơ lý), điều giả sử sai Vậy ta ln tìm điểm liên tiếp đánh số mà tổng số lớn 21

Ngày đăng: 30/10/2023, 14:17

w