1. Trang chủ
  2. » Giáo án - Bài giảng

037 đề hsg toán 8 hoằng hóa 2014 2015

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 238,65 KB

Nội dung

PHỊNG GIÁO DỤC VÀ ĐÀO TẠO HUYỆN HOẰNG HĨA KỲ THI CHỌN HỌC SINH GIỎI LỚP Năm học: 2014-2015 Mơn thi: TỐN Ngày thi: 16/03/2015 Bài (4,5 điểm) 6x    Q     :  x  2 x  x  x  x    Cho biểu thức : a) Tìm điều kiện xác định Q, rút gọn Q Q b) Tìm x c) Tìm giá trị lớn biểu thức Q Bài (4,5 điểm) 2x  2x  6x2  9x   1  2x 1 2x   x  1  x   a) Giải phương trình : b) Phân tích đa thức sau thành nhân tử: x  x  x  2 c) Tìm giá trị x, y nguyên dương cho : x  y  y  13 Bài (4,0 điểm) ab  bc  ca    c a Chứng minh a b c a) Cho abc 1 b n b) Cho số tự nhiên n  Chứng minh 10a  b  a, b  ,0  b  10  tích ab chia hết cho Bài (5,0 điểm) Cho tam giác ABC có ba góc nhọn Các đường cao AD, BE , CF cắt H a) Chứng minh rằng: BD.DC DH DA HD HE HF   1 b) Chứng minh rằng: AD BE CF c) Chứng minh rằng: H giao điểm đường phân giác tam giác DEF d) Gọi M , N , P, Q, I , K trung điểm đoạn thẳng BC , CA, AB , EF , FD, DE Chứng minh ba đường thẳng MQ, NI , PK đồng quy điểm Bài (1,0 điểm) Cho tam giác ABC cân A có AB  AC b; BC a Đường phân giác BD tam giác ABC có độ dài cạnh bên tam giác ABC Chứng minh rằng: 1 b   b a  a  b Bài (1,0 điểm) a b c    2 2 Cho a, b, c  0; a  b  c 3 Chứng minh rằng:  b  c  a ĐÁP ÁN Câu a) ĐK: x  1; x  x2  x   6x   2x   x    x  1 Q   x 1 x   x  1  x    x  x  1 x  x  b) 1   x  x  3   x  1  x   0  x  x 1 So sánh với điều kiện suy x 2 Q  x   x 2  1 3  Q ;  0; x  x   x      2 4  x  x  Vì c) Q GTLN  x  x    x  tm   Q đạt GTLN  x  x  đạt Lúc Q x Vậy GTLN Q 1 7 x  ;x  2 Câu a) ĐK:  x  3  x     x    x  1  x    x  1  x  x   x  1  x    x    x  1  x    x  1  x    x  1  x  20 x  21  x  12 x  x  16 x   x  x    x    x  1  x    x  1  x  16  x  x  16   x    x  1  2x  7  x  16  x  x  16  x  x 0  x  x  1 0  x 0 (tm)  1 x (ktm)  Vậy phương trình có nghiệm x 0 b) Ta có x3  x  x   x  x    x   x  x     x    x    x  1  x  1 c) Ta có: x  y  y  13  x  y  1  12   x  y  1  x  y  1 12 Do x  y    x  y  1 2 y  số chẵn x, y   * nên x  y   x  y  Do x  y  x  y  hai số nguyên dương chẵn Từ suy có trường hợp : x  y  6 x  y  2  x 4 y 1 Vậy  x; y   4;1 Câu ab  bc  ca  1 1    a  b  c  c a b c a a) Từ b Do đó: 1 b c 1 c a 1 a b a b   ;b  c    ;c  a    c b bc a c ac b a ab  a  b  b  c  c  a  a  b  b  c  c  a  a 2b c Suy :   a  b   b  c   c  a   a 2b 2c  1 0   a  b   b  c   c  a  0 (do abc 1 ) Suy a b c n (1) b) Ta có: 10a  b  b2  ab2 Ta chứng minh ab3 (2) n n Thật , từ đẳng thức 10a  b  có chữ số tận b n k r Đặt n 4k  r  k , r  ,0 r 3 ta có: 16 2n  2r 2r. 16k  1 10  2n r r  Nếu tận b 2r  10a 2n  2r 2r. 16k  1 3  a 3  ab3 Suy Từ  1   suy ab6 Câu A E Q P F N H K I B D a) Chỉ C M BDH ADC ( g g )  BD DH   BD.DC DH DA AD DC S HBC HD.BC HD   S ABC AD.BC AD b) Ta có: HE S HAC HF S HAB  ;  BE S CF S ABC ABC Tương tự HD HE HF S HBC  S HAC  S HAB S ABC     1 AD BE CF S S ABC ABC Do đó:   c) Chứng minh AEF ABC  c.g.c   AEF  ABC     Tương tự: DEC  ABC Do đó: AEF DEC       HED Mà AEF  HEF DEC  HED 90 nên HEF  EH phân giác ngồi góc EFD Do H giao đường phân giác tam giác DEF EM  BC d) Do BEC vuông E, M trung điểm BC nên (trung tuyến ứng với FM  BC cạnh huyền), Tương tự: Do đó: EMF cân M, mà Q trung điểm EF nên MQ  EF  MQ đường trung trực EF hay MQ đường trung trực tam giác DEF Hoàn toàn tương tự, chứng minh NI PK đường trung trực tam giác DEF nên ba đường thẳng MQ, NI , PK đồng quy điểm Câu A H D B C Vẽ BH đường cao tam giác ABC Tam giác BAD cân B  BA BD  có BH đường cao nên đường trung tuyến AD Tam giác ABC có BD đường phân giác, ta có:  AH  DA AB b DA DC DA  DC AC b b2         DA  DC BC a b a a b a b a b a b Tam giác HAB vuông H, theo định lý Pytago ta có: AD AB BH  AH  BH b  (1) Tam giác HBC vng H, theo định lý Pytago, ta có: 2 2 2 2 2 BC BH  HC  BH BC   AC  AH   BH a  b  b AD  AD   a   b     2 AD (2) Từ (1) (2) ta có: AD AD 2 2 b  a  b  b AD   b  a b AD  b 4  ab a b b 1 b   b  a  b  a       a b ab b a  a  b  a  b Vậy toán dược chứng minh Câu Do a, b   b 2b với b nên: a ab ab ab  a   a   a   b2  b2 2b b bc c ca  b  ;  c  2  a2 Tương tự ta có:  c a b c ab  bc  ca   3  2 2 Mà a  b  c 3 nên  b  c  a (1) Cũng từ a  b  c 3   a  b  c  9  a  b  c   ab  bc  ca  9 2 2 2 2 Mà a  b 2ab; b  c 2bc; c  a 2ac nên a  b  c ab  bc  ca Suy  ab  bc  ca  9  ab  bc  ca 3   a b c 3      2 2 Từ  1 ,   suy  b  c  a Đẳng thức xảy  a b c 1 dfcm

Ngày đăng: 24/10/2023, 12:17

w