1. Trang chủ
  2. » Giáo án - Bài giảng

Gki toan 9 2020 2021 to hien thanh toan thcs vn

6 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 497,97 KB

Nội dung

TRƯỜNG THCS TÔ HIẾN THÀNH ĐỀ KIỂM TRA CHẤT LƯỢNG GIỮA KÌ – MƠN: TỐN Thời gian: 90 phút Bài Thực phép tính: a 32   72 Bài b  c 42  5   2 3  1 1 (2,0 điểm) Cho hai biểu thức A  B  x 8 x x  24 với x  0, x   x 9 x 3 1) Tính giá trị biểu thức A x  25 2) Chứng minh B  x 8 x 3 3) Tìm giá trị x để biểu thức P  A.B có giá trị số nguyên Bài (2,0 điểm) Giải phương trình sau: a) x  27  16 x  48  x   b)  x   x Bài Bài Bài (1 điểm) Một mèo cành cao 6,5 m Để bắt mèo xuống cần phải đặt thang đạt độ cao đó, góc thang tạo với mặt đất biết thang dài 6,7 m? (làm trịn đến độ) Cho tam giác ABC vng A có đường cao AH Cho biết AB  3cm , AC  4cm Tính độ dài đoạn thẳng BC, HB, HC, AH Vẽ HE vng góc với AB E , HF vng góc với AC F a Chứng minh: AE.EB  EH b Chứng minh: AE.AB  AF.FC  AH Chứng minh: BE  BC.cos3 B (0,5 điểm) Giải phương trình x  3x   x2  HẾT GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 HƯỚNG DẪN GIẢI CHI TIẾT ĐỀ KIỂM TRA CHẤT LƯỢNG GIỮA KÌ – MƠN: TỐN 9TRƯỜNG THCS TƠ HIẾN THÀNH Bài Thực phép tính: a 32   72 b  c 42  5   2 3  1 1 Lời giải a 32   72  12    10 b  5    5 5 c 42     1   1   1  3  1 1    1  1 1   1 1  1   Bài (2,0 điểm) Cho hai biểu thức A  B  x 8 x x  24  với x  0, x  x 9 x 3 1) Tính giá trị biểu thức A x  25 2) Chứng minh B  x 8 x 3 3) Tìm giá trị x để biểu thức P  A.B có giá trị số nguyên Lời giải 1) A  , x  0, x  x 8 GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 Thay x  25 (thỏa mãn ĐKXĐ) vào biểu thức A ta có: A  2) B  B B B  x 3 x 3   x 3 x  24    x 3  x 3  x  x  x  24    B  B x x  24  x 9 x 3 x  7  25  13 x 3  x 3  x  x  24  x  3 x  3 x 3  x  8 x  3 x 3 x 8 x 3 3) P  A.B Ta có: P  A.B  P  x 8  x 8  x 3 x 3 Để P số ngun Có  ngun  x 3   x   ­    1; 7 x    x    x   x  16 Kết hợp ĐKXĐ suy x  16 P nhận giá trị nguyên Bài (2,0 điểm) Giải phương trình sau: a) x  27  16 x  48  x   b)  x   x Lời giải a) x  27  16 x  48  x   (ĐK x  3 )  x   x   x    x3   x3  GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027  x3  x  (thỏa mãn) Vậy tập nghiệm phương trình S  1   b)  x   x  ĐK: x  1  2  2x 1  x   x    x   (ĐK x  )  x 1  x2  x   x2  x    x  1(L)   x  1 x       x  5(TM) Vậy tập nghiệm phương trình S  5 Bài (1 điểm) Một mèo cành cao 6,5 m Để bắt mèo xuống cần phải đặt thang đạt độ cao đó, góc thang tạo với mặt đất biết thang dài 6,7 m? (làm tròn đến độ) Lời giải Gọi gốc mà mèo đậu A , vị trí mèo đậu B , chân thang C Ta có ABC vng A suy sin C  AB 6,5 65    C  76 BC 6, 67 Vậy góc thang tạo với mặt đất 76 Bài Cho tam giác ABC vng A có đường cao AH Cho biết AB  cm, AC  cm Tính độ dài đoạn thẳng BC, HB, HC, AH Vẽ HE vng góc với AB E , HF vng góc với AC F a Chứng minh: AE.EB  EH b Chứng minh: AE.AB  AF.FC  AH GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 Chứng minh: BE  BC.cos3 B Lời giải B E A H C F 1) Xét ABC vng A có AH đường cao + Áp dụng định lý Pitago có : AB2  AC  BC Thay số ta có: BC  5cm + Áp dụng hệ thức lượng tam giác vng ta có: AH BC  AB.AC Thay số ta có: 3.4  AH  AH  12 cm AB2  BH BC Thay số ta có: 32  BH  BH  cm 16 Từ ta suy CH  cm 2) Xét ABH vuông H có: đường cao EH AE.EB  EH (hệ thức lượng tam giác vuông) (1) Chứng minh tương tự ta có: AF FC  FH (2) Từ (1) (2) ta có: AE.EB  AF.FC  EH  FH Xét tứ giác AEHF có: EAF  HEA  HFA  90 Nên tứ giác AEHF hình chữ nhật (dấu hiệu nhận biết) Từ ta suy : EHF  90 Nên tam giác EHF tam giác vuông H Theo định lý Pitago có: EH  FH  EF Mà EF  AH ( AEHF hình chữ nhật) Từ ta có : AE.EB  AF.FC  EH  FH  EF  AH (điều phải chứng minh) 3) Xét tam giác vng BEH có: BE BE BE  BE  cos B   cos B      BH BE AB AB  BH  GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 Xét tam giác vng ABC có: cos B  AB (tỉ số lượng giác) BC Từ ta có: BE AB AB BC BE  cos3 B   BE  BC.cos3 B ( điều phải chứng minh) BC cos3 B  Bài (0,5 điểm) Giải phương trình x  3x   x  Lời giải ĐKXĐ: x  x  3x   x   x  x   x   x  x   x  x   3x   x      x  1   Mà  x  1  0,   x 1     3x    x   0,  x 1   3x      x    x  (thỏa mãn   3x     ĐKXĐ) Vậy tập nghiệm phương trình S  1 GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027

Ngày đăng: 10/10/2023, 14:08

w