PHÒNG GD VÀ ĐT QUẬN CẦU GIẤY TRƯỜNG THCS NAM TRUNG YÊN ĐỀ KIỂM GIỮA HỌC KÌ I NĂM HỌC 2020-2021 MƠN: TỐN Bài 1: (1,5 điểm) Thực phép tính: a) 25 64 c) Bài 2: 32 b) 1 82 3 2 3 (3 điểm) Cho biểu thức A x 5 B 3 x x 2 x 1 x x với x , x 9 x 3 x 3 x9 a) Tính giá trị biểu thức A x 16 b) Chứng minh B x x 3 B 1 A (1,5 điểm) Giải phương trình: c) Tìm x để Bài 3: a) Bài 4: 4x 9x x 1 11 25 b) x x (3,5 điểm) 1) Ngọn hải đăng Tiên Nữ cao 22,1m xây dựng năm 2000 đảo Tiên Nữ thuộc quần đảo Trường Sa, huyện Trường Sa, tỉnh Khánh Hịa Ngồi nhiệm vụ đảm bảo an toàn hàng hải khu vực quần đảo, hải đăng cột mốc chủ quyền Tổ quốc Biển Đông Một tàu nhìn thấy hải đăng Tiên Nữ theo góc 115 Hỏi tàu cách hải đăng mét? (Làm tròn kết đến chữ số thập phân thứ nhất) 2) Cho ABC vuông A có đường cao AH · a) Khi AH 12cm , AB 15cm Tính chu vi ABC số đo BAH (làm tròn đến phút) Bài 5: b) Gọi D , E hình chiếu H cạnh AB , AC Chứng minh HB.HC AE.AC AD.AB c) Chứng minh BC AB.cos B AC.cos C (0,5 điểm) Chứng minh rằng: GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 1 1 4040 1.2020 2.2019 3.2018 2020.1 2021 HẾT Bài 6: HƯỚNG DẪN GIẢI CHI TIẾT (1,5 điểm) Thực phép tính: a) 25 64 c) 32 b) 1 82 3 2 3 Lời giải: a) 25 64 5.2 3.5 10 15 17 b) 1 82 22.2 3 3 2 2 c) Bài 7: 32 3 32 (3 điểm) Cho biểu thức A 2 5 3 x 5 B 3 x 5 72 x 2 x 1 x x với x , x 9 x 3 x 3 x9 a) Tính giá trị biểu thức A x 16 x x 3 b) Chứng minh B c) Tìm x để B 1 A Lời giải a) Thay x 16 thỏa mãn điều kiện xác định vào biểu thức A ta được: A 16 9 16 Vậy A 9 x 16 b) B B B B x 2 x 1 x x x 9 x 3 x 3 x 2 x 3 ( x 3)( x 3) x 1 x 3 ( x 3)( x 3) x 4 x 9 x 3 x 3 x x 6 x x 3 x x 9 x 3 x3 x x 3 x 3 x 3 GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 B x x 3 x 3 x 3 x x 3 B x với x x x 3 Vậy B B 1 A c) Tìm x để Ta có: x x 5 x : x 3 3 x x 5 B A B 1 x 1 A x 5 2 x x x 5 5 x x 5 0 0 Mà với x , x Bài 8: x nên x x 25 Kết hợp điều kiện, x 25 ; x thỏa mãn u cầu tốn (1,5 điểm) Giải phương trình: a) 4x 9x x 1 11 25 b) x x Lời giải a) 4x 9x x 1 11 25 Điều kiện: x x 1 x 1 8.2 x 11 11 x 11 x 1 x 1 25 x 26 ( thoả mãn điều kiện) Vậy tập nghiêm phương trình S 26 b) x x Điều kiện: x GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 2x x x 2 x x 1 x 1 x 1 x x 1 x x 1 3 x x x Cả hai nghiệm thỏa mãn điều kiện 9 Vậy tập nghiệm phương trình S 1; 4 Bài 9: (3,5 điểm) 1) Ngọn hải đăng Tiên Nữ cao 22,1m xây dựng năm 2000 đảo Tiên Nữ thuộc quần đảo Trường Sa, huyện Trường Sa, tỉnh Khánh Hịa Ngồi nhiệm vụ đảm bảo an toàn hàng hải khu vực quần đảo, hải đăng cột mốc chủ quyền Tổ quốc Biển Đơng Một tàu nhìn thấy hải đăng Tiên Nữ theo góc 115 Hỏi tàu cách hải đăng mét? (Làm tròn kết đến chữ số thập phân thứ nhất) Lời giải 1) Gọi vị trí tàu T , chân hải đăng H , đỉnh hải đăng D Theo đề ta có TDH vng H HD 22,1m HD HD 22,1 Suy HT 1012,8 (m) HT tan T tan115 Vậy tàu cách hải đăng 1012,8 (m) 2) Cho ABC vng A có đường cao AH Do tan T · a) Khi AH 12cm , AB 15cm Tính chu vi ABC số đo BAH (làm tròn đến phút) b) Gọi D , E hình chiếu H cạnh AB , AC Chứng minh HB.HC AE.AC AD.AB GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 c) Chứng minh BC AB.cos B AC.cos C Lời giải 2a) Áp dụng hệ thức lượng với ABC vng A có đường cao AH ta 1 2 AB AC AH 1 2 15 AC 12 1 1 1 2 2 AC 12 15 144 225 400 20 AC 20 (cm) Do theo định lý Pytago BC AB2 AC 152 202 625 252 BC 25 (cm) Vậy ABC có chu vi 15 20 25 60 (cm) AH 12 · cos BAH 0,8 BAH 36o 52 AB 15 2b) Áp dụng hệ thức lượng với ABC vuông A có đường cao AH ta Bài 10: HB.HC AH Áp dụng hệ thức lượng với AHC vuông H có đường cao HE ta AE AC AH Áp dụng hệ thức lượng với AHB vng H có đường cao HD ta AD AB AH Vậy HB.HC AE.AC AD.AB 2c) Vì AHC vng H (giả thiết) nên HC AC cos C Mà AHB vuông H (giả thiết) nên HB AB cos B Do BC AB.cos B AC.cos C (điều phải chứng minh) (0,5 điểm) Chứng minh rằng: 1 1 4040 1.2020 2.2019 3.2018 2020.1 2021 Lời giải: Ta dễ dàng chứng minh được: Với a , b a b , ta có: ab a b Áp dụng bất đẳng thức ta có: 1.2020 2020 GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027 2.2019 2019 … 2020.1 2020 Cộng bất đẳng thức vế với vế ta được: 1 1 4040 1.2020 2.2019 3.2018 2020.1 2021 HẾT GIA SƯ HOÀI THƯƠNG BẮC NINH ZALO 0382254027