1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khảo sát các tính chất, đề xuất các tiêu chuẩn đan rối và ứng dụng của một số trạng thái phi cổ điển hai và ba mode mới

210 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 210
Dung lượng 2,31 MB

Cấu trúc

  • 3.2 Sp h t h u cc a S (ϕ) t h e o b i n | ξ| caP C S ( k= l = 0 ) (0)
  • 3.3 Sp h t h u cc a S (ϕ) t h e o b i n | ξ| v b t h a m s ( k,h) , (0)
  • 3.4 Sp h t h u cc a S (ϕ) t h e o b i n | ξ| v b t h a m s ( k,h) , (0)
  • 3.5 thc ahm R ab (u,v) th t h u cvobin |ξ| vb t h a m s (u,v) ,viccthams k v h c chncnhl k =h=6 .5 9 (0)
  • 3.6 C ct h c a h m R ab (u, v) t h e o b i n | ξ| (0)
  • 3.10 thh m E lin ph t h u c v o b i n |ξ| vc p t h a m s ( k, h) .Trongcchnh(a), (b)v( c ) n g ntlin ( k,h)=(0 ,8) lcaPCS,ccn g nttlcaP AASTMPCS.Hnh (a) ltrn g h p h = 8 v k t n g . h nh( b ) , c (0)
  • 3.11 thh m ri ℜ c a PAASTMPCS theo bi n |ξ| vbtham s (k, h) v (0)
  • 3.12 thh m n n S (ϕ) p h t h u c v o c c b i n | ξ| , ϕ v b tham s ( k, l) v i ε= 1, q= 2 . h nh (a), h (0)
  • 3.13 thh mWignercaSPAPCSviccthamsc chnl q=1 , ε = 1 , | β|= 0.3 , φ a = φ b = φ= 0 .T r o n g ( a ) , h m W pht h u c (0)
  • 3.21 thh mr i ℜ c aS P A P S P C S p h t h u c t h e o b i n | ξ| (0)
  • 3.22 thh m S U (m) p h t h u cv ob i n r v b t h a m s (h,k,l) v i p =q = 0 v ε =λ =σ = 1 .h nh(a) m=1 ,hnh(b) m=2 v bnh(c) m=3 (0)
  • 3.23 thh m S U (m) p h t h u cv ob i n r v b t h a m s (h,k,l) v i p=q= 0,ε=λ=σ=1 v m=2 (0)
  • 3.24 Biuhm S U (m) ph t h cvo λ v σ k h i p=q= 0,h= k=l,ε=1,r=4 v m=2 (0)
  • 3.25 thh m S V (m) p h t h u cv ob i n r v b t h a m s (h,k,l) khi p=q=0 v ε=λ=σ=1 (0)
  • 3.27 thh m R a (m) p h t h u cv ob i n r v b t h a m s (h,k,l) v i p=q= 0 , ε=λ=σ= 1 v m=2 (0)
  • 3.28 R a (m) d idngm th mc a λ v σ k h i p = q = 0 ,h= k=l=ε=1,m=2 v r=4 (0)
  • 3.29 thh m R a,b (m) p h t h u ct h e o b i n r v b t h a m s (h,k,l) v i p=q= 0 , ε=λ=σ= 1 .Cchnh(a),(b),v (c)lnlttn g n g m = 1 , m = 2 v m = 3 (0)
  • 3.30 thh m R a,b (m) p h t h u cv ob i n r v b t h a m s (h,k,l) v i p=q= 0,ε=λ=σ=1 v m=2 (0)
  • 3.31 R a,b (m) d idnghmc a λ v σ k h i p =q= 0,h=k= l=ε=1,r= 4, v m=2 (0)
  • 3.32 hm E (m) p h t h u cvobin r v b thams ( h,k,l) (0)
  • 3.33 thh m E (m) pht h u cvobin r v b t h a m s ( h,k,l) (0)
  • 3.34 thca E (m) d i dngmthmca λ v σ k h i p = q= 0,h=k=l=ε=1,r=4, v m=2 (0)
  • 4.2 tht r u n g t h ct r un g b nh F av p h t h u c v ob i n | ξ| (0)
  • 4.3 tht r u n g t h ct r u n g b nh F av p h t h u c v ob i n | ξ| vi |α| = 1 v q = 6 .c haihnh(a)v( b ) , ngntlin ( 0 ,6) t n g n g (0)
  • 4.4 thc at r u n g thctrungbnh F av p h t h u cvobin |ξ| vb thams (p, q,l) v i p≥q+l,ε=0.25, k=1 .hnh(a),ccthams p v q c cn h trongkhi l t ng. hnh( b ) , b t h a m s ( p,q,l) t h am n p = 2 q= 2 l v tngdn (0)
  • 4.5 thh m F av ph t h u c v o b i n | ξ| (0)
  • PHNMU 1 (18)
  • PHNNIDUNG 8 (30)
    • 1.2. Tr ngthiFock,trngthikthpvm tst r n g thiphi cin (30)
      • 1.2.1. TrngthiFockvt r ngthikthp (30)
      • 1.2.2. Trngthin modekthpthmphoton (38)
      • 1.2.3. Trngthikthphaimodethm,btphoton (38)
      • 1.2.4. Trngt h ik thpc pv k thpc pt h m,b t photon (40)
      • 1.2.5. Trngt h ik th pb b a v k th pb b a c h ng chtthmphoton (46)
    • 1.3. Mtst nhchtcacctrngthiphicin (49)
      • 1.3.1. Tnhchtnn (49)
      • 1.3.2. Tnhchtphnktchm (56)
      • 1.3.3. TnhchtphiGauss (61)
      • 1.3.4. Tnhchtanri (64)
    • 1.4. Mtsg i a o thcvi ntiln g t (68)
      • 1.4.1. Giithiu vi ntiln g t (68)
      • 1.4.2. Giaothco c cthnhphntrcgiao (70)
      • 1.4.3. Giaothco tngsh tvh i upha. . . . . . . . 371.5. Ktlun (74)
    • 2.2. C ctrngthiphicinhaimodemi (79)
      • 2.2.1. Trngthikthpcpthmvb tphotonhaimode 41 2.2.2. Trngt hikth pc pch ngch tt h mp ho t o n v (79)
    • 2.3. Tiuchuna n rimi (86)
      • 2.3.1. Tontphavtontsh t (86)
      • 2.3.2. Tiuchuna n rimi (93)
    • 2.4. Ktlun (96)
    • 3.1. Mu (97)
    • 3.2. Tnhchtphici ncatrngthikthpcpthmv btphotonhaimode (98)
      • 3.2.1. Tnhchtnntngvn nhiuhaimode (98)
      • 3.2.2. Tnhchtphnktchm (103)
      • 3.2.3. TnhchtphiGauss .. . . . . . . . . . . . . . . . 613.2.4 (109)
    • 3.3. Tnhcht phi ci nca trng thi kt hp cp chngcht thmphoton (117)
      • 3.3.1. Tnhchtnntnghaimode (117)
      • 3.3.2. TnhchtphiGauss .. . . . . . . . . . . . . . . . 703.3.3 (121)
    • 3.4. Tnhcht phi ci nca trng thi kt hp cp chngcht (126)
      • 3.4.1. Tnhchtnntnghaimode (126)
      • 3.4.2. Tnhchtphnktchm (129)
      • 3.4.3. TnhchtphiGauss .. . . . . . . . . . . . . . . . 783.4.4 (132)
    • 3.5. Tnhchtphici nbc caocatrngthikthpbb a chngchtthmphotonbamode (147)
      • 3.5.1. Tnhchtnntngbamodebccao (147)
    • 4.1. Mu (162)
    • 4.2. Vi ntilngtv itrngth ikthpc (162)
      • 4.2.1. Qutrnhvintibnggiaothcoccthnhphntrcgiao. . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.2. Qutrnhvintibnggiaothco tngsh (162)
    • 4.3. Vintilngtvitrngth ikthpcpchngchtthmphoton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.4. Vintilngtvitrngth (174)

Nội dung

Tk h i Schrodingera rakhinimriln g tg i ithchnghchlEPR [1] n m 1935, c c nh khoahcs mc t ngvm t hth ngthngtinln g tm t r u n g tmcanc h nhlc cmytnhln g t. t ngv ht h n g t n h t o n l n g t v m y t nh ln g t cara l nu ti n b i Manin [2] v o n m 1980 vb i Feynman n m 1982 [3].Chonnay,c thn i c ct ngcb n trt h n h h i n th c,nhi u qu c gia m nhvkinhtvc n g n g h nhM ,TrungQuc,c,Ngax e m vi cphttrinht h ngmytnhln g tn iringvl nhvcthngtinln g tn ichu nglc h i nlcqucgianntonhng i uki n thu nl inh t vu tr tl n cho l nhv c ny T nhnn m2021, cn h i u h n g v t r u n g t m c n g n g h c a c c n c n y n g h i n cuvcht othnhcngccmhnhthnghimmytnhln g t, inhnhnhh ngIBMcQ SystemsOne,hngGooglecS y c a m o r e , ih c Khoa h c vC ng ngh Trung Qu c cZuchongzhi.l c c hth ng m y t nh ln g tl nlt c2 7 , 5 4 v6 6 q u b i t Ttcchnguthhi n nh ngui mvtxa c c si u m y t nh ci n m n h n h t h i n nay nhF u g a k u , S u m m i t v S i e r r a T u y n h i n c h n g v n l c c m h n h thn g h i m v c n b c lnhi u nhc i m v t n h n n h c n g n h t n h ch nh x c, nh tlc c t nh to nih i sq u b i t h o t n g l n V k h i ,t nh chtr i c a c c tr ng th i ln g tcsd ng trn n b t n n h , khkimsotvnhiuvnkthutkhc.

2 ngcaChcl ngtt r o n g ngchl r iln g t.Datrnvicmt chmlasern modeb ngtrngthikthpc xut biGlaubervS u d a r s h a n nm1963[4],

[5],hnglotcctrngthi phicincccnhk h o a hctrnthg i iaranht r ngth ikth p hai photon, tr ng th i k t h p c p [6], tr ng th i k t h p hai modeSU(1,1) th m photonn , t r n g t h i n n [ 7 ] , t r n g t h i c h n k h n g n n haimodethmvb t photon[8].Trongnc,nhmtcgiNguynB n,Trn g Minhc cngcccngscnga racctrngthimivc n g trnc ct pc h q u ct cuyt nnh t r ngt h ik thpbb a [9],trngthinndchchuynthmph otonhaimode[10]vn h i utrngthikhc.Cctnhchtphicincanhngt r ng thin h t nh chtn n t ng vhi u, t nh chtph n ktchm,t nh chtphi Gauss,tnhchta n ri, c ngc quantmnghincu[8],[10],[11],[12], [13].

Trong nhng t nh ch t phici nn u tr n, t nhan r ingvaitrquan tr ng trong vi c t o ra c c ngu n r i ph c vcho c c l nh v c th ngtin l ngtv vi nt i l ng t Do,c c nhV t l lthuytaraccmhnhtoracctrngthiphici n ct nhchtrinhm h nh t o ra tr ng th i k t h p c p c a Dong vc c c ng sn m 2008 [14],mh n h t o r a t r n g t h i kth pbba c a nh mt cgiNguynB nvc ccngsn m2013[15], V i ctoraccngunritrnlt h u y t ih i ph i c ki m tra th ng qua c c ti u chu n an r i phh p V y n n c c ti u chu n hayi u k i n k i m t r a t n h a n r i c n g c q u a n t m nghi nc u.N m 1996,Peresara ti uchuntchc ivimatrnmt[ 1 6 ] Nm1997,Horodeckia ratiuchuntchc v kh ngtch civitr ng th i pha tr n [17].Tm t lo t c cti u chu nctht ch civic ch l ngtcng c xu t nhti u chu ntchc choh cbi n li nt c c aSimon vc c c ngsn m2000 [18] vm t st i u c h u n k h c [ 1 9 ]

N m 2 0 0 3 H i l l e r y v Z u b a i r y a rai ukina n richohh a i mode[20].Cngnm2006,Nh avK i m aracctiuchuna n ridavoht h cb tn h trongi sS U ( 2 ) vS U ( 1 , 1 ) [21]tp h thinrac ctrngthia n riphiGauss.Tip ,c ci ukina n r ichohh a i mode,bamodeva modecngc a ra.i n h n h l n m 2 0 0 7 , n h m t c g i L i , F e i ,

W a n g v W u a rai u k i n a n r i c h o c c t r n g t h i a m o d e [ 2 2 ] ; n m 2 0 0 8 n h m t c giDuc, Noh vK i m arati uchun an r i d avo b t ng th cchotrngthikthpcpvb b a [8].Nhnchung,cctiuchunhay i uki na n r i c ara ch y u d a tr n ht h c b t n h g i a x u n g lngvt a,sv i phmbtngthcCauchy-Schwarz.

Hi n nay cc l nhv cth ng tinl ng t ,vi nt i l ng t ,m y t nhl ng tang c nghi n c ur ts ingtr n kh p th gi i Vihi v ngg p ph n v o sph t tri n chung, c h n g t i c h n K h o s t c c t n h ch t,x u t c c t i u c h u n a n r i v n g d n g c a m t s tr ng th i phi ci n h a i v b a m o d e m i l m t i n g h i n c u c alu nn C c ngg p m ic alu nn bao g m:thnh tla rahai tr ng th i phi ci n hai mode m i, thhai ll m r c c t n h c h t phicin c am tstr ng th i phici nhai vba mode m i.Thbalxu t m t ti u chu na n ri m i cho hh a i m o d e Th t l nhgim c t h n h c n g c aqu tr nh vi nt i l ng tvingu n r ilc ctrngthihaimodemi.Vinhngn g gp,lunngpphnhu ch cho sp h t t r i n c a l n h v c Q u a n g l n g t n i c h u n g v l n h v c Thngtinlngt,mytnhlngtniring.

Mc ti u chungc a t i lxu tc c c tr ng th i phic i nhai mode m i, x y d ngc t i u c h u n a n r i m i c h o h h a i m o d e , l m rc c c t nhchtc am tstr ng th i phic i nhaivb a modemi,nhgic mct h nhcngcaccqut r nhvintiln g tv ingunrilc ctrngthiphici nmi.Trncs ,mctiuc thcalunnl:

- arac hai tr ng th i phic i nhai mode m i b ng ph ngphpthm,btphotonnhxvk h ngnhx ;

- xu tcmttiuchuna n rimidt mvnhln g an ri chohh a i m o d e ;

- L m rc c c t n h c h t p h i c i n c a c c t r n g t h i h a i v b a modeminhtnhchtnn,tnhchtphnktchm,tnhchtphiGaussthngquah mWignervt nhchtanri;

- Sd n g c c trng th i hai mode m ixu t voc c qut r n h vintiln g tmt trngthikthp , ngthin h gim ct h nhcngcaccqutrnhthngquatrun gthctrungbnh.

3.itn g vphmvinghincu it ngnghi n c u c at i lc c tr ng th i phic i nhai vba mode; c c t nh ch t phi ci n b a o g m t n h c h t n n , t n h c h t p h n ktchm,tnhchtphiGauss,tnhchtanri;cctiuchunanrivccmhnh vintilngt.

Nidungnghincucaticgiihntrongccphmvisau y C c tr ng th i phi cc n g h i n c u t r o n g p h m v i h a i v b a m o d e c a trn g i n t Ti u chu na n r i m i c xu t chd n h c h o h haimode.Cctnhchtphici nc nghincubaogmtnhchtn n, t nh ch t ph n k t ch m, t nh ch t phi Gauss vt nh ch ta n r i Ngu na n r i c sd ng cho qut r n h v i n t i l ng tbao g m batr ng th i phici n hai modeltr ng th i kth p cpth m vbtphoton hai mode, tr ng th i kt h p c p c h n g c h t t h m p h o t o n v t r n g thikthpcpchngchtthmphotonvb tphoton.Giaothcvintics dngbaogmhailoilgiaothco ccthnhphntrc giaovg i a o thco tngsh tvh i upha.

Trongqutrnhnghincuc cnidungchnhcalunn chngti sdngccphn g phpsau:

- Ph ng ph p ln g t h a l n h a i c sd n g t r o n g q u t r n h t n h to n gi i t chx y d ng tr ng th i m i, x y d ng ti u chu na n r i m i vpdng,nghincuc ctnhchtphicincac ctrngthimi;

- Phn g p h p t h n g k l n g tcsd ng khixy d ng c c bi uth c gi i t chc a trung th c trung b nh nh m nh gim c t h n h cngcaqutrnhvintilngt;

- Phn g p h p t n h s v v t h cp d n g n h g i c c k t qug i it cht h u c t r o n g h uh tc cn id u n g n g h i nc uc h nhc a ti.Phnmmcsdngtnhsvv thl M a t h e m a t i c a

5.immicat i tilu nn cm tsi mmisau:

- arac hai tr ng th i phic i nhai mode m i b ng ph ngphpthmvb tphotonnhxvk h ngnhx;

- xutc tiuchuna n rimichohh a i modettonthiuphadng Hermitevt o nthiush tcatrn g int;

- L m rm t st nh ch t phi ci n c a c c t r n g t h i h a i v b a mode m i bao g m t nh ch t n n, t nh ch t ph n k t ch m, t nh ch t phiGaussvtnhchtanri;

- Chr a csth nh c ng c a c c qut r n h v i n t i l ng tvingunanric sdnglcctrngthiphici nhaimodemi.

Vica rahaitrngthihaimodem ivn g h i ncuchititmtst nh ch t phi ci n c a c h n g c n g v i m t s t r n g t h i h a i v b a m o d e m i kh c lc s q u a n t r n g c h o c c n h l t h u y t v t h c n g h i m n g h i n c u vpd ng ch ng voc c nhi mv l ng t Ph ng ph p th m, btphotonc s d n g t r o n g q u t r n h x y d n g t r n g t h i m i c n g h a quan tr ng trong vi c t ngcng c cct nh phic i n tg p ph nnngcaomcthnhcngkhip dngcctrngthimivothctin.

Thngquavicp dngcctrngthimiv oqut r nhvintiln g t ,lu nn n g g p c s l thuytcho vi cxy d ng v c i ti nc c mh n h l t h u y t c n g n h m h n h t h c n g h i m c a q u t r n h v i n tisdngcctrngthimitrongtnglai.

Vicxydngthnhcngtiuchunanrimidatrntonthiup ha cd n gHermite vt o nth i ush tcn g h atrongv i cdtmvnhlngan ric acctrngthihaimodecatrng i n t ,cbi tlc c tr ng th i my u tpha vs h t cvai trq u a n trng.

Bc c lu nn g m ba ph n: ph n mu,ph n n i dung v ph nk t lu n Ngo i ra c n cdanh m c kh i u v i t t t , d a n h s c h h n h v , danh m c c c c ng tr nh khoa h cc n g b l i n q u a n n c c k t q u nghincucalunn,tiliuthamkhovp h lc.

- Ph n mutr nh b yldo ch n t i, mcti u nghi n c u,itn g vphmvinghincu,phn g phpnghi ncu,i mmicati,nghakhoahcvt h ctincalunn,bc clunn.

- Phnnidungbaogmbnchn g Chn g mttrnhbyvc s lthuytc at i Chng haitr nhby vv i c ara hai tr ng th iphic i nhai mode m i v xu t ti u chu na n r i m i C h n g b a tr nhby vnghi n c u c c t nh ch t phici nc a c c tr ng th iamodemi.Chn g bntrnhbyngdngcctrngthimivovint ilngt.

- Phnktluntrnhbyvnhngktqut c , n h gim c tc so vimcti ura, c cu nh ci mc at i,hn g khcphcvphttrincati.

0 6 c n g t r n h d id ng c c b i b o khoa h c, trong c0 1 b i c ng tr n t pchchuy n ng nh n m trong hth ng SCIE (Journal of ComputationalElectronics), 01 b ic n g t r n t p c h c h u y n n g n h n m t r o n g h th ng SCOPUS (Journal of Physics: Conference Series), c0 2 b i n g tr n t p ch chuy n ng nh trong nc thu c danh m c ACI (Hue UniversityJournal of Science: Natural Science vCommunicationsin Physics) vc02b ig in g t r nc ct pc h c h u y nn g nhq u ct n m t r o n g hth ngSCIE-SCOPUS (Journal of Physics B: Atomic, Molecular andOpticalPhysicsvInt er na tio na l JournalofTheoreticalPhysics).

Tr ngthiFock,trngthikthpvm tst r n g thiphi cin

Gi|n⟩ltrngthiringcaHamiltoniantrn g i ntn g vitr ri ng E n ,vto nt aˆ † ,aˆt ngnglto ntsinhvto nthuphoton Σ

Do aˆ † aˆ|n⟩= n|n⟩ (1.4) i ucngh a|n⟩ltr ngth iri ngc ato ntsh t N ˆ= aˆ † aˆ.Tr ng th i|n⟩c g iltr ng th i sh t h a y t r n g t h i F o c k , n g h a ltr ngth i cs h t x c n h v c kh i qu tttr ng th i ch n kh ng Tr ngth iFockcbiudindidng aˆ † n trong| 0⟩khiuchotrngthichnkhng,nc m tst nhcht aˆ|0⟩=0, trc chun aˆ

† |0⟩=|1⟩,⟨0|0⟩=1.Tr ngth iFockth am ni uki n

Trngthikthplnutinc Schrodingergiithiunm1926[23].Saut r ng thinycnghincu,phttrinvg i ithiubi Σ

Glauberv Sudarshan[ 4 ] , [ 5 ] von m1 9 6 3 , k hi k h os tt nhch tc achm s nglaser.T nhcht c bi t c achm laser lt n h chtkt h p,c ng ch m laser c ng cao th i h i t nh k t h p c ng nghi m ng t.Vt h t r ngthidngm t ncgiltrngthikthp.

Trngthikthp| α⟩cn h nghaltrngthiringcatonthuboson aˆ,ngh al aˆ|α⟩=α|α⟩, (1.8) trong α=r e (iϕ) lm tsph c vi r v ϕ lc csth c Khi khai tri nthngquacctrngthiFock|n⟩tht r ngthikthp|α⟩cbiudindidng

|α⟩= C n |n⟩, (1.9) n=0 trong C n l h s k h a i trin.Thay(1.9)vo(1.8)tac biuthccatrngthikthp biudintheohcs cacctrngthiFock

1 2 vi C 0 =e ( − 2 |α| ) lhs c h u nho.Khit r ngthikthpcvit li 1 2 ∞ α n

Trngthikthpcm tst nhchtquantrng.u tin,chn g lt r ngth ic chunho,nghal

Thh a i , c ct r ngt h ik th pk h ngt r cg i a o v in h a u , n g h al v i α̸ =β th

V|⟨α|β ⟩ | 2 =e−|α−β| 2n nchngc xeml tr cgiao khi|α−β| ≫ 1.T nhch t thbalt p h p c c tr ng th i|α⟩t o th nh m t t p h p,nghalp h ngiinvthom n

Tht ,ph n bs h t t r n g t h i k th p α̸=βt u n t h e o p h n b Poisson,lp h nbm s h ttrungbnhvp h n g saicatonts h t b ngnhau,ngh alD N ˆ E =∆N ˆ 2 X csu t p(n)tmthy n h t trngthikthp|α⟩l p(n)=⟨n|α⟩⟨α|n⟩=e −|α| 2 |α | , (1.15) n! trong p (n)lh mphnbP o i s s o n Dot r ngthikthplt r ngthic i n.Tnhchtthn m lt r ngthikthp| α⟩cbtnh ccti u,nghal

= , (1.16) trongt o nttav x u n g ln g cd ng xˆ= aˆ+aˆ †

Trngthikth pct h cbiudinthngquatontcbitkhi ul D ˆ a (α).thyd ngc ato ntny,uti ntathay(1.5)vo

Dd ng th yc (1.18) tha m n (1.8) Ch , do t nh ch t c a to n thynn e −α ∗ aˆ |

dob i uthc(1.18)ct h v i tlidi dng α=e − 1 | α| 2 e αaˆ † e −α ∗ aˆ |0=D ˆ (α)|0 ,

To nt D ˆ a (α)cm tst nhch tsau: a) To nt D ˆ a (α)cthcbi udi ntheonhi ucchkh cnhau,l

=e |α| 2 /2 e −α ∗ aˆ e αaˆ † b) To nt D ˆ a (α)lto ntchu nt c(unita),nghal

−1 ( α)D ˆ a (α )0 E =⟨0|0⟩=1 (1.23) c) To nt D ˆ a (α)ct nhchtdchchuyn,i unycthhi nbi

(1.25)Vphica(1.24)v(1.25)theothtb dchi mtlngbng α v α ∗ soviccvtr it ngng.Dovy,to nt D ˆ a (α)cg ilto nt dchchuyn.

Nhv y trngthikthp|α ct h cbiudintheonhiucchkhcnhau.u tinnl t r ng thiring catonth yht bosonnh

Trngthikthpthmphotonc Agarwalvc ngsa ranm1991[24]cd n gnhsau

(1.26) trong| α⟩lt r ngthi kthp, ml s n g u y nkhngm , v

Ngo i ra, tr ng th i k t h p th m photon v i mm c n g c x u t v cdng(biudintheotrngthiFock)

2 a trongNlhschunha,|α⟩ a v | β⟩ b l nlt ltrngthikth pmode avb

Trngthihaimodekthpthm,btphotonc torabngcchtcdngccto ntsinh (t h m)vhy(b t)lnccmodecatr ng th i hai modek t h p S a u y c h n g t i g i i t h i u m t t r n g t h i th m (b t)cthltr ng th i kth p hai mode th m photon d ngchngchtnhsau

|Ψ⟩ ab = N α,β aˆ † +ˆb † |α⟩ a |β⟩ b , (1.33) trongN α,β l hs chu nha.Cthv i t trngthi|Ψ ab ⟩didng

Tr ng th i kt h p c p ( P C S ) [ 6 ] c A g a r w a l p h t h i n v g i i t h i u n m1988,nltr ngth iri ngc ato nthyc pboson aˆˆbv to nthi usphotongi ahaimode Q ˆ=ˆ b † ˆ b−aˆ † aˆvitrri ngt ngng ξvq nhsau

" Σ Σ q n!(n+q)! a b n n=0 trong ξ=r e (iφ) , φl c csth c b tkv ql m tsnguy n chs chnhlchsp h o t o n h a i mode.Trongkhnggiancctr ngthiFock,trngthikthpc pcbiudindidng

Chonnay,c nhi umh nhlthuytvt h c nghi mt oraPCS [14], [25],[26],[27],y l t r n g t h i p h i G a u s s v c n h i u t n h c h t phic i n[6],[28],[29] Don c quant mnghi ncu vc n g d ngt r o n g m t s l n h v c nhv i n t i l n g t [ 3 0 ] , [ 3 1 ] V i c nghi nc u c c ph ngph pt o ra tr ngth im itPCSc c ct nh chtphicinnichungvtnhchtanrinirin g ctngcn g v angc q u a n t m n g h i n c u M t t r o n g n h n g p h n g p h p r t c quan t mlphng ph p th m, b t c c photon v o hai mode c a PCS[32],

[33].y c ngc h nhl p h n g p h pc s d ngt or a t r ngthiphici nmichn ghai.

1.2.4.2 TrngthikthpcpthmhocbtphotonnmodeTrngt h ik th pc pt h mp h o t o n nm od e v kth pc pb t

2 n photonn modec a rabiChunqingvH o n g nm2000[34].Hai Σ

(1.42) trong A mqA vA mqS l c c hs c h u n h a K h i m c t r n g t h inyquyvP C S

Trngthikth pcpthmphoton(PAPCS)c a rabiHongvc n g s n m 1 9 9 9 [ 3 2 ] T r n g t h i n y c t o r a b n g c c h t h m mphoton vohaimodecaPCSvcvitdi dng

(1.43) trong A qm l hs c h u nha,ncxcn h cd ng

, (1.44) qm [n!(n+q)!] 2 vc h rngkhi m=0thP A P C S quyvP C S

N m 2009, Yuan v c c c ngsxu t tr ng th i kth p c pthm photon tng qut (GPAPCS),tcltrng thic thm kphoton lnmode av thm lphoton lnmode b[33] Theo, GPAPCScvit Σ

|ξ,q,k,l⟩= Cq′aˆ†kb†l|ξ,q⟩=Aq Dn|n+k,n+q+l⟩, (1.45) n=0 trong C q ′ lhs c h u nha, D n v A q cxcn h nhs a u ξ n

Kh c v i PAPCS [32] vGPAPCS [33], tr ng th i k t h p c p ch ngch t th m photon (SPAPCS)c t o ra b ng c ch th m ch ng ch t c cphoton v o hai mode c a PCS Tr ng th i n yc a r a b i t c g i Thanh vc c c n g s [ 3 5 ] T r o n g k h n g g i a n c c t r n g t h i

= (C n,qkl |n+k,n+q⟩+D n,qkl |n,n+q+l⟩), (1.48) n=0 aˆ +k v ˆ b +l lc cto ntsinhb c k v l ivimode a v b , k v l l ccsn g u y nkhngm , εl st h ckhngm , vh s A qkl c xcnhtiukin chunh anhsau

Hs C n,qkl v D n,qkl phn g trnh(1.48)cxcnhbi ξ n (n+k)!

(n+q+l)! (1.51) thS P A P C S c xcnhphn g trnh(1.48)c vitlidngn ginsau

MtstnhchtphicincaSPAPCSsc tigiithiuchn g ba.c h n g bn,ch ngtitrnhbyn g dngcatrngthinyvoqutrnhVintilngt.

1.2.5 Trngthikthpbb a vk thpbb a chngchtthmphoton 1.2.5.1 Trngthikthpbb a

Trngthikthpbb a c n h nghalt r ngthiringcabbato nthy aˆˆbcˆvhi uc cto ntsh t N ˆ b −N ˆ a v N ˆ c −N ˆ b [36] aˆˆbcˆ|Ψ p,q ⟩ abc =ξ |Ψ p,q ⟩ abc , (1.53)

N ˆ c −N ˆ b |Ψ p,q ⟩ abc =q |Ψ p,q ⟩ abc , (1.55) trong ξ = r e iφ vi r,φl n h ngst h c, pv q l c csn g u y n.Khngmttnhtng qut,gis p vq kh ngm , trongbiudintrngthis

|Ψ p,q ⟩ abc = c n (ξ)|n,n+p,n+p+q⟩ abc , (1.56) n=0 trongh s k h a i trin c n (ξ)l c n (ξ)= N p,q (r)ξ n n!(n+p)!(n+p+q)! (1.57) vihs chunhaN p,q (r)cxcn h bi ∞

St h c nghim t ora trng thi nylan truyn td o t r o n g k h nggian mphh pchoccnhimvln g tcchngtia ratrong[15]. yc x e m lm t tr ng th ic tr ng phi Gauss ba mode.C ct nhchtphici n c atr ng th iny nht h n g k s u b - P o i s s o n , t n h c h tph n ktchm , t n h c h tn n, t nh chtan ri,c c h mt ngquan phic i n, c nghi n c u trong [8],[36],[37].M t str ng th ic phtt r i nt t r ngt h i k thpb ba l t r ngt h ik thpb b a p h i tuy n [38], tr ng th i kth p bb a b c h a i [ 3 9 ] , t r n g t h i k th p bb a huh nchiu[40],trngthikth pbba K -chiu[41].

STMPATCS[13]c x u tbngcchchngchtcctontv cˆ †l l n cbamodec aTCS.Ncvi td id ng aˆ

0,u+p,0 0,0,u+p+q trong| Ψ p,q ⟩ abc lt r n g t h i k t h p b b a c x c n h ( 1 5 6 ) , h, k, l lc c s n g u y n d n g , ε, λ, σ lc c s t h c v n m t r o n g o n [−1,1]vhs chunha N p,q;h,k,l (r)cxcn h cdngsau

A i,j,m (r)= P F Q (1+i,1+j,1+m;1+p,1+p+q,1+t,1+u,1+v;r 2 ) ×p !(p+q)!t!u!v! , (1.62) vi P F Q l k h i uc ah ms i ub i.C ct r t r u n g b nhc at o nt aˆ i aˆ †i ˆ b j ˆ b †j cˆ w cˆ †w v ( aˆ † ˆ b † cˆ † ) u iviSTMPATCScx cnhl

(r), (1.64) vi i , j,w,ul c cs n g u y nk h ngm C ct nhc h tp h i c i nc atrngthin yckhostchititchngba.

Mtst nhchtcacctrngthiphicin

1.3.1.1 Khinimvtrngthinn ivihaii ln g vtlkhngo c ngthi AvB t r o n g khnggiantrng thi|ψ⟩,hthcbtnhcach ngcxcnhl

Trong btn g t h c (1.65), nu du bng xy ra

4 thtanihthcb tnhtnbtnhtithiu.Khicci ln g C A v C B thamn

VA/i>;VB= CB;CA.CB= 1 ⟨ψ|hA ˆ ,B ˆ i |ψ⟩., (1.67)

lc cgi ihnln g tc h u ncailn g AvB Taxttrngthi|ψ⟩ tronghaitrn g hpsau: a) Trn g hp|ψ⟩lt r ngthikthp(|ψ⟩=|α⟩).

Trongtr ngh tBoson,x t A ˆv B ˆlto ntbi ntr cgiaonhsau

Tt a thyrnght h cbtnh cachngt nbtnh tithiu.

4 b) Trnghp|ψ⟩lt r ngthiFock(|ψ⟩=|n⟩vi n>0 ).Tac

Dophn g saica Ab ngphn g saica Bn h ngl nhngiihnlngtchun.

Trong hai trng h p tr n ta th yivic c tr ng th i ln g t ,ph ngsaic amtiln g vtlungthil nh nh ocb nggiih nln g tchu n.

Vntralli uctht n t i m t tr ng th i vt l|ψ⟩n oc atrn g htboso ncho hai i ln g A , Bm t r o n g V A( h o c V B )bh ngitr gi i h nl ng tchu n (vt t nhi n VB (ho c VA )ph il nhngiihn)saochonguynlb tn h khngbv i phmkhng?

Nuctht a cthg i |ψ⟩ltr ng th i n niviil ng A (ho c B ).Ta hi u n nlvp h n g s a i c a A c n n xu ng nh h ncgi i h nl ng tchu n. Trn g h pcbi t n u tr ng th i n nc a A (ho c B )c n th a m ni u ki n VAV B b ngb tnht ithi u thn cg iltr ng th i n nl t ng.Hai ti u mcti p theosc pnc cht oravm ttonhccctrngthinnthamnyucutrn.

S ˆ( z)=e (z ∗ aˆ 2 −zaˆ +2 ) , (1.73) a 2 2 trong z =s e iχ vi s v χ lccst h c.Rrngtac

Vy S ˆ a (z)lto ntchu nt cvto ntli nh pvinc ngltont nghcho p dngcngthc(1.73)v( 1 7 4 ) tartrac cccngthcbin iquantrngsau:

S ˆ a (z)aˆS ˆ † (z)= aˆcoshs+aˆ † e (iχ) sinhs,S ˆ a (z)aˆ † S ˆ † (z)=aˆ † coshs+aˆe (−iχ) sinhs,S ˆ † (z)aˆS ˆ a (z)=aˆc oshs−aˆ † e (iχ) sinhs,S ˆ † (z)aˆ † S ˆ a (z)= aˆ † coshs−aˆe (

M t tr ng th inmode c tht r t h n h t r n g t h i n n n u t c d n g tontn n(1 73)lntrngthi.

Hi un g n n t n g c q u a n s t t h y t r o n g q u t r n h t o t n s t n g Tclt nsc atr ngth in nu rab ng t ngc ctnsc ac ctrn g nnnmodeuvo.Nun h sngvomitrn g phitu ynl nhsngnnthngthn g thn h sngtothnhct nhch tnntng. a a a nhnghatontn ntnghaimodec Hillery a ratrong[7]nh sau

2 trong ϕl g cxcnhhn g ca V ϕ trong mtphngphc.Giaohontgiahaitonttr c giaophal h V ˆ( ϕ),V ˆ( ϕ+π/2) i = iN ˆ+ Nˆ+1, (1.77) b trong N ˆ a =a ˆ † aˆv N ˆ b = ˆ b † ˆ b lc cto ntsh tc ahaimode a v b Theoht h cbtn h giahaitontnycdng

Tr ngt h ih a i m o d e c t nhn nt ngh a i m o d e n u− 1≤ S < 0 K h i S=−1,tr ng th i bn n t i a,nh ng vi S≥0tht r n g t h i k h n g b nn. b Nntngbamodebccao

Ti ukinnntngbamodebcnht,tcgiN g u y nBn ara ti u chu n x cnh n n t ng ba mode b c cao [37].iviti uchunny,haitontbccaoc xtnhsau:

V ˆ= i(aˆ †m ˆ b †m cˆ †m −aˆ m ˆ b m cˆ m )2 , (1.82) vi ml snguynkhngm Haitontnytuntheoquanhg i a o hon trong

|⟨ Wˆ | ⟩ g (2) (0), x c su t ph t hi n raphoton thh a i t n g t h e o t h i g i a n t r , c c p h o t o n c x e m l p h n k t chmhaycngilt nhphnktchmcaphoton.cnglm thiu ngphicin.

Theo(1.92)th g (2) (τ)k hngpht h u cvothigiantr τ , nnkhngcb tkphoton ph nktchmhayphotonktchm n oivitr ngkth pnmode. Trong trn g h p t n g q u t , v im t tr ng th ic i

[37],[48].Theo Nguyn Bnvc c c n g s[37],[39], m t tr ng th i thhintnhphnktchmbc mtrong mode xn u

R x (m)cngm thm cphnktchmnmodebccaocngln.Mcphnktch mnmodebccaolc cikhi R x (m)=−1.

Ph nktchmlm ttrongnhngtnhchtphici nquantrngvcn g d ng trongc cnhi mv l ng tnht o rac ctr ng th ith m photon b ng bt c h c h m [ 4 9 ] i u k i n p h n k t c h m h a i m o d e b c cao c Lee [28]aral n uti n n m 1990 vs a u c ph ttri n vmr ng bi t c giNguyn Bn[9] n m 2002 Theot c giLee,hmphnktchmhaimodebccaocd ng

Mttrngthichaimode av b c t nhchtphnktchmhaimodebccaonuh m R ab (u,v)thamniukin

R ab (u,v)0 Tr ng th ic E Vc ng l n, tr ngth ic n g r i V i c s d n g e n t r o p y v o n N e u m a n n t n h t o n r i c h o cctrngthihaimodenhk thpcphaytrngthinnchnkhnghai modec s d n g t r o n g [ 6 2 ] , t r n g t h i n n c h n k h n g h a i m o d e chngchtkthpthmvh yphoton[65]. b Tiuchunentropytuyntnh

HnchcatiuchunanrientropyvonNeumannlk h ngcgit r c n t r n V v y r t k h ara c nh ngh a cho m t tr ngthiriccihocltn g Dov i cchu nhar ilcnthi t.Ti u chu n entropy tuy n t nh kh c ph cc nhci m c a ti u chu nentropy von Neumann Theo nhA g a r w a l - B i s w a s [ 6 2 ] , e n t r o p y t u y n t n h cdng

Theo,trngthibr ikhi00)c ng l mchomcp h nktchmcaPAASTMPCScaohnPCS.

Nhvy,i vi t nhcht ph nktchm haimodeb c cao, c cktqukhostchoth ytnhphnktchmcaPAASTMPCSpht h u cvovicchnbc( u,v)cah mphnktchm R ab (u,v).Cth,khi u c ng l n ho c v c ng nht h p h n k tch m c a PAASTMPCS t ng.B n c nh, k h i g i m s p h o t o n t h m v o m o d e ah a yψ b t i m o d e bth m cph n ktch m hai mode b c caoc t ng c ng.cbi tlkhithmvb tphotonlnhaimodesaochotng k+hk h ngi , nusp h o t o n h a i m o d e c n b n g (k= h ), thp h n k t c h m h a i m o d e b c caoll n nh t K t quk h o s t c n c h o t h y r n g P A A S T M P C S c tnhchtphnktchmcaohnsovitrngthigcPCS.

Trongquanghcln g t,hmWignercsd ngxcn h cc ctnhcatrngthivtlt r o n g khnggianpha.i vimttrngth ib t k,h mW i g n e r c a n c t h nh nc c g i trt y Th ngthn g , hmWignerdn g cthxcnhnm ttrngthilln g tho cl ng tphi Gauss [87] Tuy nhi n,m t str ngth i,h m Wignerc achng cthnh n m ts gitrm T r o n g tr ngh p, c ctr ngth inycx cnh nlc ctr ng th i phi Gauss [88],[89], [90].iviPAASTMPCSc chop h n g trnh(2.4),hmWignerc giithiu (1.101)ct h cvitlidi dngsau

4e 2(|α a | 2 +|α b | 2 ) ∫ π 4 × ba ⟨ − γ b ,−γ a |ρˆ ab |γ a ,γ b ⟩ ab , (3.11) trong α a =|α a |e iφ a v α b =|α b | e iφ b lc csph ctrongkh nggianpha,|γ a ⟩ a v |γ b ⟩ b khi uchoc ctr ngth ikth pv ρˆ ab lto ntm t c aPAASTMPCScx cnh(2.6).Thayto ntm t ρˆ ab phngtrnh(2.6)vophngtrnh(3.11)saut nhcctchphnphc(xem phl c), chng ta thuc hm Wigner ca PAASTMPCS nhs a u

Ch ng t i sd n g b i u t h c k h a i t r i n p h n g t r n h ( 3 1 2 ) k h o s t c cc t n h p h i G a u s s v p h i c i n c a P A A S T M P C S T r o n g H n h 3.8,chngtivt h s p h t h u ccahmWigner W v ophnthcvp h n o c a α a v i|ξ|= 0.2, α b = 0.5, φ= 0v h= k= 1.K t qucho th y r ng h m Wigner c a PAASTMPCS nh n c c gitrmtrong m t sv ng cakh ng gian pha Do,ch ng t i ktlu n r ngPAASTMPCS lm t t r n g t h i p h i c i n v p h i G a u s s N g o i r a , t r o n g H nh 3.9, ch ng t ic h n m t v n g n h t r o n g k h n g g i a n p h a c h r a r ng s u c a h m Wignercth c t ng cn g n u s p h o t o n c th m v o k vs p h o t o n b t i l c t ng l n.ngli n n t m u xanhdn g(k=0, h=q= 6)tn g n g v i

P C S cim c c t i u t m n h t Ccngkhctn g n g viPAASTMPCScimcctium nhiuh n so viPCS.i u n y ch ngtr ng vi c th m vb tc c photon v oc c modeng vai trquan tr ng trong vi c n ng cao t nh phi Gauss c aPAASTMPCSsovitrngth igcPCS.

Nh v y, ch ng t i k t lu n r ng PAASTMPCS lm t tr ng th i phiGauss M c phi Gauss c a PAASTMPCS cao h n PCS v c t ngcn g bngcchtngsphotonthmvb tlnccmodecaPCS. k

Hn h 3.8: th h mWigner ( W) t h e o phnthcvp h no ca α a v i | ξ|

3.2.4.1.nhl n g a n ribngtiuchunentropytuyntnh ivicctrngthihaimode,mtst i uchunct h csd ng dt m s a n r i [ 1 6 ] , [ 2 0 ] , [ 5 9 ] , [ 9 1 ] v n h l n g a n r i [ 6 2 ] , [ 6 4 ] , [ 9 2 ] c ach ng.k h o s tm ca n r i caPAASTMPCS,ch ng tich ntiuchunentropytuyntnh[62].Theo, hma n ri E lincchod ng

W ρˆ=[Tr (ρ^ Σ )]= |C(ξ)||n+k⟩ b ab n;k,h b ^ Σ Σ Σ − Σ a lyc entropytuyntnh E lincaPAASTMPCSnhs a u b trongT r kh i uchophptonly vtcamatrn.Trngthibr inu E lin > 0 K h i E lin = 1,tr ngth ic mca n ritia.ivi

PAASTMPCSc chop h n g trnh(2.4)vto ntm t ca rap h n g trnh(2.6),chngtithuc

Ch ng t i kh o s t m can r i c a PAASTMPCS b ng c chsd ngphn g trnh(3.16).TrongHnh3.10,chngtivt h s phthucc a E linv o| ξ|ivim t sg i t r k v h=q−l Trong,trn g h p k=l=0v h =q=8( ngli n n t m u xanh lam) tn g n g v iPCSvn h n g n g c n l ilc a

PAASTMPCS.c ng git r| ξ|, c cngcongchothygit r c a E liniviPAASTMPCSluncaohnPCS.B n c nh, c c n g c o n g t r o n g H n h 3 1 0 ( a ) v ( b ) c h o t h y g i t r E lint ng n u sp h o t o n c t h m v o kv s p h o t o n b t i l t ng (t cl hg i m).i uc nghalmca n ricaPAASTMPCSctngcn g bngcch ngthitngsphotonthmvomode av b t imode b c a PCS Th m vo,trong trng h p vi c th m vbtphotonngth i t ng l n, thgitrc a E linc ng t ng theo,c bi tltrongtrnghphiu k−lc ngln(xemHnh3.10(c)). b

H nh3.10: thhm E lin ph thucv obi n |ξ| vcpthams (k,h) Trongcch nh (a), (b) v(c)ngn t li n (k, h)=(0,8) lc a PCS, ccngn tt lc aPAASTMPCS.Hnh(a)ltrnghp h=8 v k t ng.h nh(b),ccng ntttn g n g k=8 v h gi m ( l t n g ) h n h ( c ) , c c ngn ttng v i k t n g v h gim( l t ng),ngthihiu k−l t ng. photonc th m vb tc ng t ng, th m c an r i c a PAASTMPCScngcao.M cr ict h t i ntilt n g khibi nk th pvslngccphotoncthmvbtrtln.

3.2.4.2 nhln g a n ribngtiuchuna n rimi xcnhmcr icaPAASTMPCSbngtiuchuna n rimi,ch ngti tnhc ci ln g v p h icaphn g trnh(2.46).

ξξξ ξξξ Σ b Σ a b m;k, h utinlcci ln g E 1, E 2 v E 3,mtlnnachngtathychngbt r i ttiudocctr t r u n g bnhlinquann tontp h a bngkhng, ct h l

C cil ng N 1 vN 2 vp h i c aphn g t r n h ( 2 4 6 ) c x c nhquacctrt r u n g bnhlinquann tonts htcxcnhphn g t r n h

Th m r iℜiviPAASTMPCSphn g t r n h ( 3 1 8 ) chng t ivthn h gim ca n ricaPAASTMPCSdavotiuchun nhln g a n rimiH nh3.11.Ccn g congtrongHnh3.11l thc a h m ℜ pht h u c v o b i n k t h p|ξ|v i bt h a m s ( k, h)thayi v q=8.ngcong(k, l) =(0,8)m u xanh dn g n t l i n n g viPCS, c cngcong c n l ing viPAASTMPCS.H n h

( a ) ccngnttn g vicctrn g hp k t ngdntrongkhicnh h=8(ha y l=0).Trong khi,H nh 3.11 (b), c cngn ttngvicctrn g hp hgi mdn(hay lt ngdn)trongkhicnh k=8. a

P A A S T M - PCSbtu br ivng|ξ|cg i t r b ,r itngnhanhvdd ng tgit r l n(trn0.7)ngaykhigit r | ξ|tkhongmtn v.Mt i m ng ch lr i c a PAASTMPCS lu n cao h n PCS tr n to nminca| ξ|.Cct h c ngchothykhitngsp h o t o n c thmvo

H nh3 1 1 : t h h m r i ℜ c a P A A S T M P C S t h e o b i n | ξ| v b t h a m s ( k, h) v i q= 8 Hnh(a)ngvitrn g hp h= 8 v k t ngdn.Hnh(b)n g vitrn g hp k=8 v h gi md n( l t ngdn). mode a (t ng k ) hay t ng sp h o t o n b b t i m o d e b (t ng l hay gi m h ) th an r i c a PAASTMPCS t ng cao ng k so viPCS, nh tlv ng| ξ|n h.Khi|ξ| rtln,r icaPAASTMPCStimcnmtnv( g i t r l tn g ) v n h h n g k h n g n g k v o s p h o t o n c t h m vohaybtic cmode. so s nh viktquan c a PAASTMPCS khis dng ti uchu n m i vt i u c h u n e n t r o p y t u y n t n h , c h n g t a s o s n h c c t h H nh 3.11 vH n h

3 1 0 ( a ) v ( b ) T c c t h t a t h y c n h i u i m tngng khisd ng ti u chu n m i vti u chu n entropy tuyn t nh.Cthl khi k t ng vc nh l (c nh h ) c c H nh 3.11 (a) v3 1 0 (a),hockhitng l(gi m h )vc n h kc cHnh3.11(b)v3 1 0 (b),

ξξξ ξξξ ricaPAASTMPCStngn g kvng|ξ|b.PAASTMPCSbt uc xemlr ivt r c g i t r | ξ|cngrtgnnhau.Cthiv i ng(k, h)= ( 1 6 ,8)H nh 3.11 (a), PAASTMPCS b t u r i khi ℜ≈0 t i|ξ|

3.11v3 1 0 u tngnhanhvm tn vk h i | ξ|tng,tuynhintheo

D E D E ti u chu n m i, r i c a PAASTMPCS t ng nhanh h n v ng c| ξ|bv cao h n v ng c|ξ|l n V d cho ng(k, h)=(4,8)t i|ξ|

Nhv y vi cp d n g t i u c h u n m i i viPAASTMPCS cho ktqut t , n g t i n c y v c n h i u i m t n g n g v ivi cp d n g t i u chunentropytuyntnh.ricatrngth itheotiuchunmithngcaohntiuchunentropytuy ntnhkhibinkthpkhngb.

Tnhcht phi ci nca trng thi kt hp cp chngcht thmphoton

S a u , t h u n t i n cho vi c nghi n c u, h m n n t ng hai mode S(ϕ)[10]c n h n g h a nhsau

⟨N a +N b +1⟩ , (3.19) trong phn g s a i (∆V(ϕ)) 2 =V(ϕ) 2 − ⟨V(ϕ)⟩ 2 vi V(ϕ)lto ntn n t ng hai mode cd n g V(ϕ)=a † b † e iϕ +ab e −iϕ 2 , ϕ lth c, ⟨N a ⟩v ⟨ N b ⟩ls p h o t o n t r u n g b n h c a c c m o d e a v b Theo [10], m t tr ngthict nhchtnntnghaimodenuhmnn S(ϕ)catrngthithamn−1≤S(ϕ)

Tt r ngt h ik thpcp( P C S ) c n h n g h ap h ngt r nh(1.38)vh m n ntnghaimode( 3 1 9 ) , dd ngthyrng S(ϕ)=0.Do

PCSkhngct nhchtnn tnghaimode.Tuynhin,i viSPAPCS cn h nghap h n g trnh(1.48)vi ukinnntnghaimode

Hn h 3 1 2 : th h mn n S (ϕ) p h t h u cvoc cbin | ξ| , ϕ v b thams ( k,l) v i ε= 1 ,q= 2 h nh(a),h m S (ϕ) p h t h u cvocbi n | ξ| v ϕ v i ( k,l)= ( 4 ,2) hnh(b), S (ϕ) p h thucvo | ξ| vi k= 2 v l t ngdn.h nh(c), S(ϕ) p h thucvo

(3.19), ch ng t i t nh to n v thuc h m n n S(ϕ)[93] i v i m isn g u y ndng kvlnh sau

+ ε ( n + q + l )!(2 n + q + l ) , trongh s A qkl cchob iphn g trnh(1.49), φ v ϕ c chnsaocho φ=ϕ

Chngtisd ngbiuthckhaitrinp h n g trnh(3.20)l mrc tnhnnt nghaimodecaSPAPCS.Hnh3.12,chngtiv

∞ 2 ths p h t h u c c a h m S(ϕ)ph thu c v o bi n|ξ| vicho m t sgit r c a ϕ , k,qv l Hnh3.12(a) chothyrngkhi ϕ = m π /

4vi m l m tsn g u y n,thS P A P C S st h h i ntnhchtnnt nghaimodettnht.B ncnh, Hnh3.12(b)v(c)chothyrngnuthams k ccnhv lc tnglnhocthams l c cnhv kc t ng l n, thm c n n t n g s h a i m o d e c a S P A P C S c n g c t n g cng Ngo i ra, trong nh ng tr ng h p,c c t nh ch t n n t ng haimodepht h u cvothams km nhhnthams l

Nhv y , tc c ktqun u t r n c h o t h y S P A P C S ct nh ch t n nt ng hai mode trong khi PCS thk h n g i m n g c h l c t n h n n t ng hai mode c a SPAPCS c t ng cn g n u sl n g p h o t o n c thmvochaimodecaPCStng.

3.3.2 TnhchtphiGauss iviSPAPCS, ch ng t i c ngsd ng phng ph p kh o s th mWigner vd a v o t nhm c a n , nhiviPAASTMPCSti u mc3.2.3,n h g i t n h c h t p h i G a u s s H m W i g n e r c h o t r n g t h i h a i modec n h n g h a p h n g t r n h

( 1 1 0 1 ) x c n h c h m n y cho SPAPCS, ch ng ta x t to ntma tr n m tiviSPAPCS [35]nhsau ρˆ ab =|Θ q;k,l ⟩ ab ⟨Θ q;k,l |

( 1 4 8 ) v (1.52).Bngcchthay ρˆ ab ph ngtr nh(3.21)voph ngtr nh(1.101)vt nhtchphnphcchngtithuc

|β|= 0 3 , φ a = φ b = φ= 0 Trong(a),hm W p h t h u cvophnthcvp h no ca α v i ξ= 4 v ( k,l)=(3,12) Trong(b), W p h t h u cvobin |ξ| vi |α|=0.5

(3.22) trong2 F 0 kh i uchohmsiubi. bi tc c i m c a h m W i g n e r p h n g t r n h

( 3 2 2 ) , c h n g t i vt h c a h m WH n h 3 1 3 T r o n g , h n h ( a ) l t h c a h m Wp h t h u c v o p h n t h c v p h n o c a t h a m s α Ch ng tacthth yst n t i c c git r c am c a h m Wigner trong m t sv n g c a kh ng gian pha Vvy, SPAPCS lm t t r n g t h i p h i G a u s s T r o n g h n h (b), c cngconglthc a Wp h t h u c v o b i n |ξ|vb t h a m s (k, l), trong k v l c c h n t n g d n n g c o n g n t c h

∞ n,m=0j,i=1 m e n (0,0)tn g n g viPCS,nhngn g khctn g n g viSPAPCS.Rrnggitrc ctiuc acchmWigneri viSPAPCSlunnhh ni vi k a qk

PCS H n n a, c cngcong cho th y r ng khi c c thams k v l t ngl n, s u c a h m Wigner c ngc t ng cn g i u c ngh a l ,khicngnhiuphotonc th mvohaimodecaPCS,tnhphiGausscaSPAPCScngtng.

G a u s s catrngthinypht h u cvosp h o t o n c thmvoch a i mo dec a PCS, sp h o t o n c th m t ng th phi Gauss c ng t ng theo.phiGausscaSPAPCScaohnkhnhiusovitrngthigcPCS.

Cn h i utiuchunn h ln g anricatrngthihaimode. y,chngtich nti uchu nentropytuyntnh[62]khost an r ichoSPAPCS.Theo,h mentropytuyn t nh E linc nh nghal

2 , (3.23) trong E linlu n th a m n0≤E lin ≤1 N u E linc a m t tr ng th i kh c0 tht r n g t h i br i , E linc ng l n than r i c a tr ng th i c ngcao N u E lin =1, tht r n g t h i can r iltn g x c nh E lincho SPAPCS,u t i n c h n g t i d a v o ρ ab p h n g t r n h

( 3 2 1 ) t n h ρ a = Tr b (ρ ab ).C u ic ng,ch ngt ixcn h c E lin = 1 −Trρ 2 =

((n+q+k)!) 2 , (3.24) tronghs A qkl c x cn h ( 1 4 9 ) Sh ng E 0 trong(3.24)c vi ttngminhl

H nh3.14: thh mentropytuy nt nh E lin ph thucv obi n |ξ| v i φ=π,ε=1,q=

3 Trong h nh (a) v(b)ng cong (0, 0) tngng v i PCS, c cng c n l in g v i SPAPCS.hnh(a),ccn g nttn g vitrn g hpcn h l=4 v k t ng.hnh(b),ccn g n tt n g vitrn g hpcn h k=4 v l t ng.

((n+q+k)!) 2 (n+k)! δ k,l , trong δ k,l l h mdeltaKroneckerpht h u cvoccchs k v l Do khi k l t h E 0 =0

Tk t quvh m entropy tuyt t nh(3.24) v(??), ch ng t i kh os t an r i c aSPAPCSb ng cchvt h TrongH nh3.14,chngt i v thv sph thu c ca E linv o|ξ|vi φ=πv ε=1ivim t sg i t r c a c p t h a m s( k, l), trongc c n g n t l i n m u x a n h(k=l=0)tngn g viPCSvc cn g khclS P A P C S Tronghn h

(a) v( b ) , c c ngcong cho th y r ng khi l c nh v k c t ng l n ho c ng c l i khi kc nh v l t ng, th E lins t ng vim i gi tr| ξ|dn g C c ngcong c a SPAPCS lu n cao h nngcong c a PCS.Thmvo, khigit r c a|ξ| rtln,thc cngconghm E linhitvtinvm tn v.

Nhv y tacthk tlu n r ngr i c a S P A P C S l u n c a o h n c a PCS vim i git r| ξ|dn g v n c t n g cng n usphoton th mvoccmodecaPCStng.

Tnhcht phi ci nca trng thi kt hp cp chngcht

3.4.1 Tnhchtnntnghaimode kh o s t t nh ch t n n t ng hai mode c a SPAPSPCS,c c h o phngtrnh(2.11),chngtikhaitrinphn g sai(∆ V ϕ ) 2 i vitrngthi nyrithayvophn g trnh(1.80).Ktqut h u c

Cct h a m s S 1 ,S 2 ,S 3 t r o n g p h n g t r nh( 3 2 5 ) c xcnhtrong trn g hp q≥l v k l l Σ 2 ε 2 n!(n+b 1 )!(2n+b 2 ) n=0 ( n+b 2 )!( n+a 1

Chrng,trongtrn g hp k=l=0,hmn ntngcaSPAPSPCS

Hn h 3 1 5 : C cthc ah m S(ϕ) ph t h u cvobin |ξ| vc pthams ( k,l) vi ε= 1 , ϕ= 0 v q = 9 Hnh(a)tn g n g vitrn g hpc k v l u tng.Hnh(b)tn g ngvitrn g hp k t ngnhng l c n h cquyvd ngcaPCSnhs a u

Phn g trnh(3.29)chr a rngPCSkhngct nhchtnntnghaimode.

3 1 5 nhgin n c a SPAPSPCS pht h u c nht h n ovosl n g photonc thmvomode av b ti m o d e b H nh 3.15 (a) lt h c a h m n n t n g h a i m o d e S(ϕ), h m n y phthucvobin| ξ| vc pthams( k,l).Cct h b a o gmn g congntlinmuxanhlam(5,1) ;ng congntchmch mg chm ut m(7,2);n g c o n g n t c h m g c h m u x a n h l ( 1 0 ,4);n g c o n g n t g c h m u( 1 4 ,7).

C cn g c o n g c h o t h y r n g k h i c k v l t n g n g thi,git r c ahmnntng S(ϕ)cngtngtrntonmingit r c a

|ξ| C ng dd ng nh n th y r ng gitrc a h m n n S(ϕ)pht h u c r t nhiuvothams k i unyc thh i nrt r o n g Hnh3.15(b),bi

2 ngc o n g n tl i nm ux a n h d n g ( 5 ,1) ;n g c o n g n tc h mc h mgchm ut m( 1 0 ,1) ;n g c o n g n tc h mg chm ux a n hl(20,1)v ngcongntgchmu(50,1) C cngco n g tngn g v i

∞ 2 trn g hpthams l c cn h v k t ngln,chngchothyrngkhi kt ngnhanh,gitrc a S (ϕ)sg i mmnhvg i t r −1.

Tv i ckhosttnhchtn ntnghaimodecaSPAPSPCS,chngt i th y r ng vi c t ng slng photonc th m v o mode a vslngphotonbtim o d e bc thlmtngn ncaSPAPSPCS.Trongkhi ,tr ngthigcPCShontonkhngct nhchtnntnghaimode.B n c nh, n n c a S P A P S P C S c t n g c n g m n h k h i s l n g photonthmvomode at ngln.

Ti uki n x cnht nh ch t ph n ktch m hai mode b c cao c atr ng th ia m o d e , c c h o p h n g t r n h ( 1 9 5 ) , c h n g t i t n h t o n chiti tiviSPAPSPCSvt h u c ktqu

! trong u 1 =v 2 =u;u 2 =v 1 =v Khi k=l ,hm R ab (u,v)cdngnh sau

Vitrn g hp k ̸=l ,hm R ab (u,v)cxcnhl

Khi k= l= 0,hm R ab (u,v)q u yvd ngtn g n g viPCSnhs a u

Tk t q u p h n g t r n h ( 3 3 0 ) n ( 3 3 3 ) , c h n g t i n g h i n c u t nh ch t ph n k t chm c a SPAPSPCS b ng c ch kh o s t h m ph n k tch m R ab (u, v) H m n y kh ng chp h t h u c v o b c uv v m c n p h thu c vo s l ngphotonc th m vo k vtr i l C ctht r o n g Hnh3.16(a)v3 1 6 (b)lc cn g congcahmlinkt R ab (u

,v),phthucv ob i nk th p| ξ| vs t h a y i c ac cc pt h a m s( u,v)hoc(k,l)trongkhiccthamskhcccn hl ε =1,φ=0,q=9.

Trong H nh 3.16 (a), bang cong(10,4),(10,3)v ( 1 0 ,2)n g v i trn g h p c n h u nh ng gi m v , ch ng cho th y git r c a R ab gi m khithams v gi mtrntonmingit r c a|ξ|.i unychothymc ph n ktch m c a SPAPSPCS st ng l n n u tham sb c v gi m.Tuyn h i n,c cn g c o n g c nl ib a o g m( 1 2 ,1) ,

( 1 4 ,1)v ( 1 6 ,1)n g vitrn g h p c n h v nh ng t ng u , ch ng cho th y r ng git r c a R ab (u, v)gi m khi tham s u t ng tr n to n mi n gitrc a |ξ|.i u n ycho th y m c ph n ktch m c a SPAPSPCS t ng l n n u tham s u t ng

Hn h 3 1 6 : t h c ahm R ab (u,v) p h t h u cvobin |ξ| viccthamsccnhl ε = 1 , φ = 0 v q = 9 h n h ( a ) , c p t h a m s ( u, v) t h a y i t r o n g k h i k = l=

TrongH n h 3 1 6 ( b ) , n g c o n g( k, l)= ( 0 ,0)tn g n g v i t r n g thibanu caPCS.Ccn g congcnlibaogmn g cong(1 ,1) ,

(3,3)v (5,5)tn g n g v iSPAPSPCS.Rr nglgi trc a R ab (u, v)gi m khi c c tham sk v l t ng ng th i tr n to n mi n git r c a | ξ|.Nc h o thyrngmcp h nktch mcaSPAPSPCStnglnnusln g p h o t o n c t h m v o m o d e a vb t i m o d e b c ng t ng l n.Ngo i ra, ch ng t i c ng th y gitrc a R ab (u, v)iviSPAPSPCS lu nth p h n git r c a P C S t r n t o n m i n g i t r c a |ξ|, dom c ph nktchmc aSPAPSPCScaohnsoviPCS.

Nhvy,SPAPSPCSltrngthictnhchtphnktch mcaoh n PCS T nh ch t n yc t ng cn g t r o n g t r n g h p t h a y ib cph n ktch m sao cho u t ng ho c v gi m v trn g h p t n g n g t h i sphotonthmvomode av s photonbtmode bc a PCS.

Q − ( a−k)lh mPochhammer. khi nnh n gitrm [13],[29],[71],[89],[90],[94].i v i tr ng th i haimode av b ,hm Wignerc xcn h p h n g trnh(1.101)c vitlididngs au

W= π 4 e 2(γ a ∗ α a +γ b ∗ α b −γ a α a ∗ −γ b α b ∗ ) × b a ⟨ − γ b ,−γ a |ρˆ ab |γ a ,γ b ⟩ ab dγ a dγ 2 b , 2 (3.34) trong α a = |α a |e iφ a ,α b = |α b |e iφ b lc csph ctrongkhnggianpha,

|γ a ⟩ a v|γ b ⟩ b l c ctr ngth ikthpv ρˆ ab l to ntmatr nm t.iviSPAPSPCSto ntmatr nm t ρˆ ab c x cnh(2.12).Thayto ntmatr nm t ρˆ ab t ph ngtr nh(2.12)voph ngtr nh(3.34)vt h c h i n c c b c t n h t o n t a t h u c h m W i g n e r c a

,h m Wigner W phthu c theo ph n th c vph no c a α a trongkhi c c tham sk h c c c h n c n h b a o g m ε=1, ξ=8,|α b |

Hnh3.17(b)lc ct h h mWigner Wt h e o bin| ξ|,n g vicpg i tr( k,l)khcn h a u , c ct h a m s cnl ic c h nc nh l

0 H nh( a ) l t h h m W t r o n g k h ngg i a n p h a p h t h u cv op h nt h cv p h no c a α a v i ξ=8 , |α b |=0.4 v k= l=9 H nh (b)lccthh m W p h t h u c v o bin |ξ| vbt h a m s (k,l) trong khi |α a |=0.5 v |α b |=0.4 q= 12; ε= 1 ;|α a |= 0 5;| α b |

= 0.4;φ a = φ a = φ= 0.ng(0,0) n gvitrngthigcPCS,ccn g cnli ngviSPAPSPCS.c bitl ng(3,5)n g v i t r n g h p c h n g c h t t h m 3 v b t 5 p h o t o n ; n g (6,7)n g vitrn g h pchngchtthm6vb t7photon;n g (9,9) ng vitr ng h p ch ng ch t th m 9 vb t9 photon C ct h n y cho th y, khi ch n c c tham sphh p, vi c th m vb t photon v o c cmodecaPCStoraSPAPSPCScm hmWignercaohn.c bitkhi k=l ,git r c c t i u c a h m Wg i m , t c m h m Wigner t ng,dotnhchtphiGaussc tngcng.

K t quk h o s t c h o t h y m h m Wigner c a SPAPSPCS r tcao, git r h m n y d d n g t−0.3, th m chc n cthn h h n i u nykhngdd ngtmthycctrngthikhc,thmchk h ngthcc c tr ng th ic k h o s t D o v y , S P A P S P C S ltr ng th i phiGaussmnhsoviPCS,PAASTMPCSvS P A P C S p h i Gausscth c t ng cng b ng c ch t ng sphoton th m vb t v o c c m o d e c a PCSkthp vivicchnphhpccthamskhc. k a b

3.4.4.1.nhl n g a n ribngtiuchunentropytuyntnh nhl n g a n ricamttrngthihaimodechngtacths d ngnhiuti uchunkhcnhau[62],[64].Mitiuchuncn h ng unhc i mkhcnhauvp h hpvimthc c trngthinhtnh. ychn g tisd ngtiuchunentropytuyntnh[62]n h ln g anrichoSPAPSPCS.Hmentropytuyntnhc n h ngha

(3.36)Git r c a E linivimttrngthinmtrongon[0;1].Nu E lin =0 th tr ng th i ho n to n kh ng b r i Khi E lin >0th tr ng th i b r i E linc ng l n, r i c ng cao, khi E lin =1tr ng th itr i c c ihayltng.

Tto ntmatr nm t ρˆ ab i viSPAPSPCS,cx cnh phngtrnh(2.12),cctont ρˆ 2 v ρ ˆ 2 cxcn h cd ngsau ρˆ 2 = Σ Σ C s,n C j,n+a−a+b−b C ∗

Tphngtrnh(3.39),chngtivitl i E lindidngkhaitrintheoccchs r , s,ivjnh sau

Thayccthamsc xcn h trongphn g trnh(2.10)vophn g trnh(3.40)chngtathuc hm E linn hs a u

Tk t q u b i u t h c ( 3 4 2 ) , c h n g t i t i n h n h v t h k h o s ta n ritheotiuchunentropytuy ntnhcaSPAPSPCSH nh

3.18 C cn g cong lths ph thu c c a E linv o bi n|ξ|vic pthams( k, l)t h a yi t r o n g k h i c c t h a m s k h c c c h n c n h l ε=1;φ=π;q=9.Trongcchnh,n g ntlin( 0 ,0) ngvitrngthigcP CS,ccn g nttcnlin g viSPAPSPCS.Ch a i Hnh

H nh3.18: thcah m E lin ph thucv obi n |ξ| vcpthams (k,l) v i ε=1,φ=π v q = 9 n g n t l i n (0,0) c h a i h n h ( a ) v ( b ) n g v i P C S , c c n g n t t l c a SPAPSPCS h nh (a), cc ngn tttn g n g v i t r n g h p l=q= 9 v k tng.h nh(b),ccngntt tn g ngvitrn g hp k=q=9 trongkhi l tng.

3.18 (a)v3 18 (b) uchothya n r ica SPAPSPCS lun ln hnPCS vi m i|ξ|>0,i un y th yrnh ng vt r g i t r c a |ξ|k h n g ln.a n ricaSPAPSPCSct h t n trn90%ngayck h i git r

|ξ|nh v k ho c l kh ng qu l n V dtrong H nh 3.18 (a), vi k=l=9, E lin ≈0.91t i vt r c | ξ|=5.0 Khi so s nh c cng(3, 9) v (9, 9)H nh 3.18 (a), ch ng ta th y r ng n u k t ng tha n r i c a

S P A P S P C S c ngt ng theo Tuy nhi n, khi k t ngnkhi k=l=q thngcong lcao nh t hay an r i t t nh t,i u n y t h y r k h i s o s n h h a i ng(9,9)v (15 ,9) Cngtngtn h vy , H nh3.18(b),khi lt ngth

(b) anricaSPAPSPCScngtng,khi lt ngn git r m l =k=qth ngcongcaonhtcngngnghavianrittnht. nhgic h i titcctrn g hpcbitnhk h i k= l≤qh o c k= l=q , chn g t i v t h H n h 3 1 9 H n h ( a ) c h o t r n g h p k= l≤q ,ccn g congchothyrngkhi k= lt ngln,mcanr i c ng t ng m i git r c a |ξ| Chonkhi k=l=q , ng cong vtrc a o n h t , t n g n g v itrn g h p S P A P S P C S c a n r i l n n h t trntonminca| ξ|.c bitlk h i ccthams k , l,qt ng,n g thi

H nh3.19: thc ah m E lin ph thucv obi n ξ vbthams (k,l,q) v i ε=1 v φ= π Hnh(a)lt r n g hp k= l t ng,trongkhi q= 8 Hnh(b)lt r n g hp k=l=q t ng. thamn k=l=q tha n r i E lincngtng ln.Dd ngnhn thy i u n y tc c n g c o n g t r o n g H n h 3 1 9 ( b ) , n h n g v t r c g i t r ca|ξ|khln.

Trngthikthpcpchngchtthmphotonvb tphotoncd ng c chophng tr nh (2.11).x c nh m cr i c a PAASTM-PCS theo ti u chu n m i, ch ng t i t m d ng khai tri n c a h m r iℜphn g t r n h ( 2 4 6 ) l m c i u , u ti n, ch ng t

A s,n A r,n+a− a |ξ| 2n ξ ∗a s −a r (n+a s )δ a− b, a − b i t nh c cilng N 1 , N 2 ,E 1 , E 2 vE 3 cnh ngh aphng tr nh (2.47)iviPAASTMPCS.Ktquthucl

Dt h yrng,miquanhg i ahaithams k v l c n h hn g rtlnn hmr i ℜ Cthtacmtstrnghpcbitsau:

2 a b a b k=l±2hoc k=l±4,khihmri ℜ lnlt cd ng

+Khi k̸ =l+j,j ∈ {−4;−2;2;4}th E 1 ,E 2 ,E 3n gth itrittiu nnhmriℜcd ng

+c bitkhi k=l=q ,th N 1 =N 2,khih mriℜcd ngnginsau

Trongphn g trnh(3.51)v( 3 5 2 ) , cci ln g N 1 v N 2 c xcn h nhsa u

N ˆ 2 E −DN ˆE 2 −DN ˆE 2 , (3.54) trongc ctrt r u n g bnhc xcn h c cphn g trnh(2.13)n (2.16).

( 3 4 9 ) v ( 3 5 0 ) , ch ngti v c cthc h o b n t r n g h p k= l+2, l=k+2, k= l+4vl=k+4nhH nh 3.20 Trong,ng(k, l) =(0,0)lthh m r i ℜ c a PCS, c cngc n l ilc a SPAPSPCS vi k v l t ng d n vth a m n b n trn g h p n u t r n uti n ta dd n g t h y r n g t r o n g cb n trn g h p , r i c a SPAPSPCS l n h n PCSngkvngmg i t r c a|ξ| khngln.ivicctrn g hp k=l+2( hnha)v k=l+ 4(h nh c)r i c a

S P A P S P C S t n g n h a n h k h i kv l t n g k h u vccgitr|ξ| nh.Trongkhic ngkhuvc,trnghp l=k+2

Hn h 3 2 0 : t h h m r i ℜ c a S P A P S P C S p h t h u c t h e o b i n |ξ| v b t h a m s ( k, l) ,v i q= 8, ε= 1, φ= 0 c c h n h ( a ) , ( b ) , ( c ) v ( d ) n g c o n g (k, l) = (0,0) n g v i PCS, ccng c n l ilc a SPAPSPCS v i k v l t ng d n H nh (a)n g v i t r n g h p k=l+2 ,h nh (b)n g v i t r n g h p l=k+2 ,h nh (c)n g v i t r n g h p k= l+4 ,hnh(d)ngvitrnghp l=k+4

(hnhb)v l =k+2(hnhd)r icaSPAPSPCStngchmhnkhi k v l tng. ivihmriℜ c cphn g trnh(3.51)v( 3 5 2 ) , chngtiti nhnhvc cthc ahmℜchocctrn g hp k=l̸=q ,v k=l=q

H nh 3.21 (a) v( b ) h n h ( a ) , n g (k, l, q) = (0,0,8)tn g n g v i PCS,ccngc nlilcaSPAPSPCS.Ccthc h o thykhi k= lt ng th r i t ng r t nhanh v ng|ξ|nh , th m chg i t r ℜ ≈1ngayti| ξ|

= 0 vi k = l = q = 8.thyr i uc bitn y,c h ngt iv c c th h nh (b), trong k= l=qt

Hn h 3 2 1 : t h h m r i ℜ c a S P A P S P C S p h t h u c t h e o b i n |ξ| v b t h a m s ( k, l, q) v i ε =1,φ= 0 h nh(a), n g cong ( 0 ,0,8) n g vitrngthiPCS,ccn g cnlilcaSPAPS PCSvi q=8 trongkhi k=l tngdn.Hnh(b)lt r n g hp k=l=q tngdn. ngth ik h i k= l=qt n g , g i t r c aℜc n g t n gl n N h v y c tht h y , r i c a SPAPSPCS g n nht ltn g t r n t o n m i n |ξ|trongtrn g hp k,l,qb n g nhauvc h b ngvin v.Lur ng,khi k=l=q thSPAPSPCSct nhi xng cao nh t vp h n b p h o t o n haimode.th yri uny,chngtaxemlibiudinc aSPAPSPCS phng tr nh (2.8).Rr ng tr ng th i n ylth p c a hai tr ng th ith nh ph n Khi k=l=q th kh ng ch s photon hai mode a v b c am i tr ng th i th nh ph n b ng nhau mt n g s p h o t o n m i m o d e c a chai tr ng th i th nh ph n c ng b ng nhau.i un y h mr ng, vi cth m vb t p h o t o n s a o c h o S P A P S P C S c t n h i x n g c n g c a o v p h n bp h o t o n h a i m o d e t h an r i c a tr ng th i c ng c ng l n, th mchtgnmcltng. so s nh ti u chu nan r i m i v i ti u chu n entropy tuy n t nh,chngtasosnhccthcc ngbt ham s( k,l,q)hnh3.21(b)v

3.19 (b) Rr ngiv i chai ti u chu n, khi k=l=q an r i c aSPAPSPCS utm c r t cao v g n v i tr ng h plt ng ngaytkhigitr|ξ|chtvinv.n g thi,khigitrca k,l,q tngln m r i c a SPAPSPCS c ng t ng i m kh c bi tlv ng m| ξ|cgitrn h , a n r i c a S P A P S P C S t h e o t i u c h u n a n r i m i tgit r tr n 0.95 vt n g c h m n m t n v T r o n g k h i v i t i u c h u n e n t r o p y tuy n t nh, r it t0.5vt n g k h n h a n h n0.95, sau t ng r tchmn mtn v.

Nhv y, sau khi kh o s tr i c a SPAPSPCS b ng ti u chu nentropytuyn t nhvcti uchunan r i mi,chng t i th y r ngSPAPSPCSltr ng th ican r i r t m nh.Chai ti u chu ncktquk h t n g n g khiu chothyr i caSPAPSPCSctngcn g k h i t n g s p h o t o n t h m v o v b t i h a i m o d e c a P C S , n g th ian r it tnh t khi k= l=q , t clkhi tr ng th i n ycsphoton hai mode c n b ng.i m kh c bi txy ra v ng m|ξ|cgitrn h N h n g i m tngngv kh c bi tcng tn g tnhk h i p dngiviPAASTMPCS.

Tnhchtphici nbc caocatrngthikthpbb a chngchtthmphotonbamode

Tc c h m n n t ng ba mode b c caoc x cnhp h n g t r n h (1.85) v( 1 8 6 ) , c h n g t i t n h t o n v t h u c c c b i u t h c t n g minhcachngi viSTMPATCS[95]nhsau

Hnh3 2 2 : thh m S U (m) ph t h u cvobin r v b thams ( h,k,l) v i p=q= 0 v ε=λ=σ=1 h nh(a) m= 1 ,hnh(b) m=2 v bnh(c) m=3 trong B i,j,w , C u v D i,j,w ca r a c c p h n g t r n h ( 1 6 3 ) ,

Bi u th c gi i t ch trong phn g t r n h ( 3 5 5 ) v ( 3 5 6 ) c h o p h p c h n g tinghincutnhchtnntngbamodebccaocaSTMPATCS.TrongH nh 3.22, ch ng t i vt h h m S U (m)pht h c v o b i n r khi p=q= 0vε=λ=σ=1vim t sgitrkh c nhauc a h, k,l v m Th nhn y, ch ng tactht h y r n g m c n n c n ng cao b ng c ch t ng h,k,lc ngnh r v ibtkbc mn o.Tuynhin,mcmca S U (m)sg i m n u m cgit r c a o L ur ng tr ng th i kth p b ba kh ngt n t isn n t ng ba mode Do,sxu t hi n t nh ch t n n t ng bamode bc cao trong STMPATCS ch ng tvai trquan tr ng c a vi c th mphoton.

Chngt it p =q = 0 ,ε=λ = σ = 1v m =2 ,t r o n g t r n g h p h+k+l lh ng s v v ths ph thu c c a S U (m)v o r vi h,k v l cthayi H nh3.23.Mcn ntngbamodebccaoll n nh t khi sl n g p h o t o n c t h m v o h a i m o d e l n h n h t

T r o n g H nh3.24,chngt ic ngvb i u h m S U (m)phthuc λ v σ vi p=q= 0,h=k= l=ε=1,r=4v m = 2 Trongtrn g hpny,mc nntngbamodebccaolcaonhtkhic| λ|v| σ|uthpnht. Σ

Hnh3 2 5 : t h h m S V (m) p h t h u cvobi n r v b t h a m s ( h,k,l) k h i p =q= 0 v ε=λ=σ=1 iv i S V (m),trongH nh3.25,ch ngt ivt h h m n y phthucvobin r khi p=q=0 v m=2 ivimtsgitrca h,k v l Dd ngthyrngSTMPATCSkhngthh i ntnhchtnntngba modeb ccaotrong V ˆvc cgitrc a S V (m)lu nkh ngm.i uny cgiithchlv t r ngthiny t ntitnhchtnnt ngbamodeb ccaotrong U ˆ.

3.5.2.1.Tnhchtphnktchmn modebccao kh o s t t nh ch t ph n k t ch mn mode b c cao cho STM-PATCS, ch ngt it nh h m R x (m)( 1 9 3 ) v nh nc k tqui vimode al

( 3 5 8 ) v (3.59)chophpchngtikho sttnhchtphnktchmn modebccaoch oSTMPATCS.ivimode a ,trongHnh3.26,chngtiv thc a R a (m)p hn g tr nh(3 57) di dngm th mc a r k h i p=q=0ivim tsgitrc a(h, k,l)v m K tquc h o t h y r n g m c ph n ktchm nmode b c caoivimode ac t ng c ngbngcchtngbc m Tuynhin,ns g i mnutngsp h o t o n h , kv lc t hmvo.Ngoira,khi mnh v h,kvll n,hm R a (m)trnn m h n trong v ng gitrcao c a r i ung chn alkhi m l n,STMPATCSluntntitnhchtphnktchmnmodebccao.

Khi h+k+lc cnh, t clt ng s photon c th m v olm t h ng s , trong H nh 3.27,chng t ivt h h m R a (m)phthucv o bi n rkhip=q=0vm =2vic c git r k h c n h a u c a h, kv l Ch ng

(1, 1, 4) tactht h y r n g m c ph n ktch mnmode b c cao l nnhtkhislngphotonc thmvomode al nh nht.Mtkhc,

Hn h3 2 6 : th h m R a (m) p h t h u cvobin r v bthams ( h,k,l) k h i p=q= 0 v ε =λ=σ= 1 Hnh(a),(b)v( c ) lnlt n g vi m=1 , m=2 v m =3

Hnh3.28,khi p = q= 0 ,h= k= l=λ=1v r= 4 ,m ca R a (m)lcao nh t n u λ=σ=0, t clc c photon ch c th m v o mode a Lur ngccktqun utrncngngchoccmode b v c

Davohmphnktchmhaimodebccaoc chop h ngtrnh(1.96), chngtivitlihmnytheohaimode xvyψ s a u

⟨xˆ †m xˆ m yψˆ † yψˆ⟩+⟨yψˆ †m yψˆ m xˆ † xˆ⟩ −1 (3.61) Mtt r ngt h ia m o d e c t nhp h nk tc h mh a i m o d e b c m k h i

R x,yψ (m)q=l th F avgi m.i u n y cho th y, t i m i git r | ξ|,khi k , q,l t h a yψi saocho k = q = l t h F avtgit r caonhttcl trungthctrungbnhlt tnht.H nh4.5(b),cngtn g tn h vy,ccngc ongntt chothy,khi lt ngdnngit r l =q(ch l ≤q )tht r u n g thctrungbnh F avtng.Bncnhc h a i hnh

H nh4.5: thh m F av ph thucv obi n |ξ| vbbathams (k,q,l) v i ε=1; φ=0 Hnh(a)ngvitrn g hp k t ng,hnh(b)n g vitrn g hp l t ng,hnh(c)n g vicct rnghp k=l=q t ng. bt n m 2007 trong b i b o [30] C cngc n l i trong (c) t ng ngvic cS P A P S P C S c k , l,qn g t h it n g d n v lun t h ai uk i n k=l=q C cngcong n y cho th y,trung th c trung b nh c c ic a SPAPSPCS lu n cao h n trn g h p t tnh t c a PCS, vd trongh nh (b)c F av ≈82%t i |ξ|≈ 10 Th m v o,trung th c trungbnhtgitrcngcaonu k=l=qc g i trcngln.

Nhv y tacthnh nthy r ng, vi cp d ng SPAPSPCS v o vi ntiln g tmttrngthikthptronggiaothco ccthnhphntr c giao lr t t h n h c n g v t r u n g t h c t r u n g b n h k h n g n h n g v t quatr ngh pt tnh t c a PCS (76%)mc n dd n g ttr n 80%nhngvtrcbinkthpthp.

Trong chn g n y , c h n g t i p d ng c c tr ng th i phic i nhaimodemibaogmPAASTMPCS,SPAPCSv SPAPSPCSvoqut rnhvintiln g tmttrngthikthp.Cbatrngthim iu c sdng l m ngu n r i cho qutr nh vi n t i b ng giao th co c cthnhphntrcgiao.RingPAASTMPCSc p dngchocg i a o thc otngsh tvh i uphanhmsosnhhaigiaothccsd ng.

K t qu cho th y,ivigiao th coc c th nh ph n tr c giao,cbatr ng th i m iu lngu n r it tcho qu tr nh vi n t i.Cthtrungth c trung b nhiviPAASTMPCSctht n70%mi ncgitr| ξ| tk h o ngvichcn vt r ln.iviSPAPCSvS P A P S P C S trung th c trung b nh ccicao h ntrung th c c ci iviPCS (76%) vcthttr n80%khi|ξ|cgit r k h o n g v i nvv c c tham sc c h n p h h p t r u n g t h c t r u n g b n h i v i c b a tr ng th i m iuc t ng cn g k h i t n g s p h o t o n c t h m h o c bthocct h mvb tphhpv occmodecaPCS.

KhipdngPAASTMPCSvoqut r nhvintivigiaothco tngsh t vh i upha,t r u n g thctrungbnhcaqut r nhvinti c t ng cn g t r o n g t r n g h p t n g s p h o t o n c t h m v o m o d e aho c b tmode b c a PCS ho cltrn g h p g i m b i n kth p α Khi αl k h n h ,t r u n g thctrungbnhcaqut r nhvintidd ng t nx p x 100% Do PAASTMPCS phh p v igiao th co t n g sh tvh i uphahngiaoth co ccthnhphntr cgiaonubincatrngthikth pcvintilkhnh

Hinnay,cclnhvcnhthngtinln g t,mytnhln g tvvi nt iln g t cnh ngbc ph t tri n m nh m Vi c t m ra c ctr ng th i m icc c t nh ch t phic i ncao,cbi tlt nh ch ta n r i hay vi c t m ra c c phn g ph p t ng cn g m c th nh c ng c ac c nhi mvlngtnhv i n t iln g tv na n g lnh ng v nc n quantmnghincunhiu tl t h u y tnthcnghim.Tn h ngvn c p thi t,ch ngti l a ch n nghi n c u t i lu nn n y v thucmtsktquminhsau:

Thn h t , c h n g t i ara hai tr ng th i phi c i n hai modemibn g phn g phpthm,btphoton.utin,bngcchthmvb t nhxccphotonlnhaimodecaPCSchngtitoratrngthikthpcpthmvb t photonhaimode(PAASTMPCS).Tip, chngti d ng ph ng ph p th m v b t p h o t o n k h n g n h x t o r a t r n g thikthpcpchngchtthmphotonvb tphoton(SPAPSPCS).

Thh a i , c h n g t ixu tc ti u chu na n r i m i c h o h h a i mode th ng qua c c to n th i u s h t v h i u p h a c d n g

H e r m i t e C c ktquso s nh vnhgicho th y ti u chu nan r i m i r t hi u qutrong trong vi cdt m vn h l n g an r i c a c c tr ng th i haimode m i K t qu kh o s tan r i c a c c tr ng th i hai mode theoti u chu na n r i m i k h t n g n g so viti u chu n entropy tuy ntnh.Tuynhina n ritheotiuchunmithn g caohn.

Thba, chng t inghi n c u c c t nh ch t c a hai tr ng th i phic i n m i c xu t chn g h a i v h a i t r n g t h i p h i c i n h a i v ba mode m ic xu t g n y K t quc h o t h y , c c t r n g t h i n y ctnhphicincao,cthhinthngquatnhchtnn,tnhphn ktchm,tnhphiGaussvt nhchta n ri.Tnhphici ncachng ctngcn g bngcchthayi sp h o t o n thm,btvoccmodec a tr ng th i g c vic c tham suv o c ch n m t c ch ph h p.B n c nh, m t st n h c h t p h i c i ntrong tr ng h p b c cao th t thnbcthp,inhnhnhi viSTMPATCS.c bit,khisosnh an r i c a c c tr ng th i PCS, PAASTMPCS, SPAPCS vSPAPSPCS,chngtinhnthyvicthm,btphotont oratrngthimic an r i cao h n tr ng th igc banu Ngo i ra, trng h p th m, btphoton kh ng nhxthn g t o r a c c t r n g t h i m i canrit th nsovitrngh pnhx.

Tht ,ch ng t isd ng c c tr ng th i hai mode m i bao g mPAASTMPCS, SPAPCS vS P A P S P C S l m n g u n a n r i c h o q u t r n h vintiln g tmttrngthikthp.Davot r u n g thctrungb nh,ch ngtith yr ngc cqutr nhvi nti lr tt h n h c n g trungthctrungbnhcaccqut r nhvintic t ngcn g vc a o h nngks o v itrn g h p sd ng PCS khi th m, btsp h o t o n hai modec a PCS.iving n r ilSPAPCS vSPAPSPCS,trungthctrungbnhcaccqut r nhvintit git r c a o trn8 0%khisd ng giao th co c c th nh ph n tr c giao Tuy nhi n, vingu n r i lPAASTMPCS,t r u n g t h c t r u n g b n h c a q u t r n h v i n t i c t h l n tr n 90% khisd ng giao th co t ng sh t vh i u p h a , v i i uki nbincatrngthikthpcvintilnh

Nh vy , m cti u c ntc c at ilu n n c ho nth nh Lu nn cth c ti pt cnghi n c u vp h t t r i n t h e o n h i u h ng kh c nhau Hng thnh tlti pt cnghi n c u c c t nh ch t phicinbccaocacctrngthihaimodemi.Hn g thh a i lxutccmhnhct htoracctrngthihaimodemibngthcnghim.

Hn g t h t l p d ng ti u chu na n r i m i c h o n h i u h tr ng th i t m ra c c tr ng th ia n r i m i c a n r i c a o c n g n h x cnhc nhnghtrngthiphhpvitiuchunminy.

1 Truong Minh Duc,Ho Sy Chuongand Tran Quang Dat (2021) De- tecting nonclassicality and non-Gaussianity by the Wigner function andquantum teleportation in photon-added-and-subtracted two modes pair co-herentstate.JournalofComputationalElectronics,20,2124-2134.

2.Ho Sy Chuongand Truong Minh Duc (2022) Sum squeezing, entangle- ment and quantum teleportation of the superposition of photon-added paircoherents t a t e J o u r n a l ofPhysics:ConferenceSeries,22 6 9 ,0 1 2 0 0

3 Tran Quang Dat,Ho Sy Chuong, Dao Van Hung and Truong MinhDuc(2022).Higher-ordernonclassicalityinsuperpositionofthree- modephoton-added trio coherent states Communications in Physics,32 ,

4 HSCh ng, HNg c TrungvTrng Minhc(2022) Nghi nc u c c t nh ch t phici nc a tr ng th i kth p c p th m vb tphotonhaimode.T p c h K h o a h c i h c H u : K h o a h c T n h i n , 131 ,75-83.

2 Manin Yu.I (1980) Vychislimoe i Nevychislimoe (Computable andNoncomputable)(tingNga).Moscow:Sov.Radio,13-15.

3 Feynman R.P (1982).Simulating physics with computers Int. J.Theor.Phys.,21 ,467-488.

4 Glauber R.J (1963) Coherent and Incoherent States of the RadiationField.Phys.Rev.,131,2766-2788.

5 Sudarshan E.C.G (1963) Equivalence of semiclassical and quantummechanical descrlptjons of statistical light beams Phys. Rev Lett.,10 ,277-279.

6 Agarwal G.S (1988) Nonclassical statistics of fields in pair coherentstates.J.Opt.Soc.Am.B,5,1940-1947.

7 Hillery M (1989) Sum and difference squeezing of the electromagneticfield.Phys.Rev.A,40,3147-3155.

8 Duc T.M., Noh J., and Kim K (2008) Entanglement criteria in in- equality for pair and trio coherent states Adv in Natural Sciences,9 ,123-131.

9 An N.B and Duc T.M (2002) Trio coherent states Quantum andSemiclassicalOptics,4 ,80-85.

10.Duc T.M., Hoai N.T.X., and An N.B (2014) Sum Squeezing, Dif- ferenceSqueezing,Higher-

11.Duc T.M., and Noh J (2008) Higher-order properties of photon- addedcoherentstates Opt.Comm.,281, 2842-2848.

12.Duc T.M., Dinh D.H., and Dat T.Q (2016) Even and Odd ChargeCoherent States: Higher-Order Nonclassical Properties and Genera-tionScheme.Int.J.Theor.Phys.,55,3027-3040.

13.Dat T.Q., Duc T.M (2020) Nonclassical Properties of the Superposi- tion of Three-Mode Photon-Added Trio Coherent State Int J. Theor.Phys.59,3206-3216.

14.Dong Y.L., Zou X.B., and Guo G.C (2008) Generation of pair co- herent state using weak cross-Kerr media Physics Letters

15.Duc T.M., Dat T.Q., An N.B., and Kim J (2013) Scheme for thegeneration of freely traveling optical trio coherent states Phys. Rev.A.88,022320(1-8).

16.Peres A (1996) Separability Criterion for Density Matrices. Phys.Rev.Lett.,77,1413-1415.

17.Horodecki P (1997) Separability criterion and inseparable mixed stateswithpositivepartialtransposition.Phys.Lett.A,232 ,333-

18.Simon R (2000) Peres-Horodecki separability criterion for continuousvariablesystems.Phys.Rev.Lett.,84,2726-2729.

19.Shchukin E., and Vogel W (2005) Inseparability criteria for continu- ousbipartitequantumstates.Phys.Rev.Lett.,95,230502(1-4).

21.Nha H., and Kim J (2007) Demonstrating multipartite entanglementof single-particle W states: Linear optical schemes Phyψs. Rev A, 75,012326(1-6).

22.Li Z.G., Fei S.M et al (2007) Entanglement conditions for multimodestates.Phys.Rev.A,75,012311(1-5).

24.Agarwal G.S., and Tara K (1991) Nonclassical properties of statesgenerated by the excitations on a coherent state Phys Rev.

25.Agarwal G.S (1986) Generation of Pair Coherent States and Squeez- ing via the Competition of Four-Wave Mixing and Amplified Sponta- neous Emission Phys.Rev.Lett.,57 , 827-830.

26.Wang K.G et al (2001) Generation of Pair Coherent States in Two- dimensionalTrapped.Chin.Phys.Lett.,18 ,367-369.

27.Obada A.S.F., and Khalil E.M (2006) Generation and some non- classical properties of a finite dimensional pair coherent state. OpticsCommunications,260 ,19-24.

28.Lee C.T (1990) Many-photon antibunching in generalized pair co- herentstates.Phys.Rev.A,41,1569-1575.

29.Hu L.Y., and Fan H.Y (2009) Entanglement Involved in Pair Coher- ent State Studied via Wigner Function Formalism, Commun.Theor.Phys.,52,1071-1075.

30.Gabris A., and Agarwal G.S (2007) Quantum teleportation with pair- coherentstates.Int.J.ofQuan.Inf.,5 ,17-22.

31.Dat T.Q., Duc T.M., and Chuong H.S (2018) Improvement quantumteleportation via the pair coherent states Journal of Physics: Conf.Series,1034,012004(1-6).

32.Hong L., and Guang-can G (1999) Nonclassical properties of photon- added pair coherent states Acta Phys Sin (Overseas Edn),8 , 577-582.

33.Yuan H.C et al (2009) Statistical Properties of the GeneralizedPhoton-Added Pair CoherentState Int J Theor. Phys.,48, 3596-3606.

34.ChunqingH.,andHongL.(2000).Statisticalpropertiesofphoton- addedan dp h oton - su bt ract edp airc oh er en t st a te A ct aP h o t o n i c a S i n i c a ,29 ,4

35.Thanh L.T.H., Chuong H.S., and Duc T.M (2022) Enhancement ofdynamical entanglement in a dispersive two-mode Jaynes- Cummingsmodel via superposition of photon-added pair coherent state. (In prepa-ration).

36.An N.B., and Duc T.M (2002) Generation of three-mode nonclassicalvibrationalstatesofions.Phys.Rev.A,66,065401(1-3).

37.An N.B (2002) Multimode higher-order antibunching and squeezingin trio coherent states J Opt B: Quantum Semiclass Opt.,4 , 222-227.

38.Miry S.R., and Tavassoly M.K (2012) Generation of nonlinear mo- tionaltriocoherentstatesandtheirnonclassicalproperties.J.Ph ys.

39.An N.B., and Duc T.M (2002) Even and odd trio coherent states:antibunching and violation of Cauchy-Schwarz inequalities J. Opt B:QuantumSemiclass.Opt.,4 , 289-294.

40.ObadaA.S.F.,AhmedM.M.A.etal.(2008).FiniteDimensionalTrio-Coherent States and Some Non-Classical Properties Chin Jour Phys.,46 ,479-491.

41.YiH.S.,AnN.B.,andKimJ.(2004) K - dimensionaltriocoherentstates.J.Phys.A:Math.andGen.,37 ,11017-

42.Yuan Z et al (2002) Electrically Driven Single-Photon Source Sci- ence,295 ,102-105.

43.AlleviA , O l i v a r e s S , a n d B o n d a n i M ( 2 0 1 2 ) H i g h - o r d e r p h o t o n - numbercorrelations:aresourceforc h a r a c t e r i z a t i o n a n d a p p l i c a t i o n s ofquantumstates.Int J.Quan.Inf.,10,1241003(1-8).

44.Pathak A., and Garcia M (2006) Control of higher order antibunch- ing.Appl.Phys.B,84 ,479-484.

45.Duc T.M., Dinh D.H., and Dat T.Q (2020) Higher-order nonclassicalproperties of nonlinear charge pair cat states J Phys B:

46.Thapliyal K., Pathak A et al (2014) Nonclassical properties of acontradirectionalnonlinearopticalcoupler.Phys.Lett.A,378 ,3431-

47.SafaeianO.,andTavassolyM.K.(2011).Deformedphoton-addednonlinear coherent states and their non-classical properties.J.o f P h y s A:Math.andTheor.,44,225301(1-18).

48.Gupta P., Pandey P.N., and Pathak A (2006) Higher order anti- bunchingisnotararephenomenon.J.Phys.B:At.Mol.Opt.Phys.,

49.Sabapathy K.K., and Winter A (2017) Non-Gaussian operations onbosonic modes of light: Photon-added Gaussian channels Physical Re- viewA,95,062309(1-17).

50.JacobsenS.H., and Jarvis P.D (2008) Regularized tripartite con- tinuous variable EPR-type states with Wigner functions and CHSHviolations Journal of Physics A: Mathematical and Theoretical,41,365301(1-16).

51.Banaszek K and Wdkiewicz K (1998) Nonlocality of the Einstein- Podolsky-Rosen state in the Wigner representation Phys Rev.

52.Agarwal G.S., and Wolf E (1970) Calculus for functions of noncom- muting operatorsand general phase-space methods in quantum me- chanics I Mapping theorems and ordering of functions of noncom- mutingoperators.PhysicalReviewD,2,2161-2186.

53.Schrodinger E (1935) Discussion of Probability Relations betweenSeparated Systems Mathematical Proceedings of the Cambridge Philo-sophicalSociety,31 ,555-563.

54.Schrodinger E (1936) Probability relations between separated sys- tems MathematicalProceedings of the Cambridge Philosophical Soci- ety,32 ,446-452.

55.Schnabel R (2017) Squeezed states of light and their applications inlaserinterferometers.PhysicsReports,684 ,1-51.

56.ZhengS.B.,andGuoG.C.(1997).Generationofpairandbi-pairco- herentstates.Z.Phys.B,104 ,311-313.

57.Gerry C.C (2011) State-projective scheme for generating pair coher- ent states in traveling-wave optical fields Phys.Rev.A ,84, 023810(1-5).

58.Gerry C.C., and Mimih J (2010) Heisenberg-limited interferometrywith pair coherent states and parity measurements. Phys Rev A82,013831(1-7).

59.Duan M., Giedke G et al (2000) Inseparability criterion for contin- uousvariablesystems.Phys.Rev.Lett.,84,2722-2725.

60.Mancini S., Giovannetti V et al (2002) Entangling macroscopic oscil- latorsexploitingradiation pressure Phy s R e v L e t t ,88 ,1204

61.Loock P.V., and Furusawa A (2003) Detecting genuine multipartitecontinuous- variableentanglement.Phys.Rev.A,67,052315(1-13).

62.Agarwal G.S., and Biswas A (2005) Quantitative measures of entan- glementinpair- coherentstates.J.Opt.B:QuantumSemiclass.Opt.,7 ,350-

63.Bennett C.H., Bernstein H.J et al (1996) Concentrating Partial En- tanglementbyLocalOperations.Phys.Rev.A,53,2046-2052.

64.Wu J., Liu S et al (2015) Improving entanglement of even entangledcoherent states by a coherent superposition of photon subtraction andaddition.Jour.Opt.Soc.Am.B,32,2299-2307.

65.Lee S.Y., Ji S.W et al (2011) Enhancing quantum entanglement forcontinuous variables by a coherent superposition of photon subtractionandaddition.Phys.Rev.A,84,012302(1-6).

66.Buscemi F., Bordone P., and Bertoni A (2007) Linear entropy asan entanglement measure in two-fermion systems Phys Rev.

67.BennettC.H.etal.(1993).Teleportinganunknownquantumstateviadual classic and EinsteinPodolsky-Rosen channels Phys Rev Lett.,70,1895-1899.

68.FurusawaA.etal.(1998).UnconditionalQuantumTeleportation.Sci- ence,282 ,706-709.

69.Pirandola S., Eisert J et al (2015) Advances in quantum teleporta- tion.NaturePhotonics,9 ,641-652.

70.Duc T.M., Dat T.Q., and Chuong H.S (2020) Quantum entanglementand teleportation in superposition of multiple-photon- added two- modesqueezedvacuumstate.Int.J.Mod.Phys.B34,2050223(1-9).

71.Duc T.M., Chuong H.S., and Dat T.Q (2021) Detecting nonclassi- cality and non-Gaussianity by the Wigner function and quantum tele-portationinphoton-added-and- subtractedtwomodespaircoherentstate.J.Comput.Electron.202124 2134.

72.Vaidmann L (1994) Teleportation of quantum states Phys Rev.

73.Braunstein S.L., and Kimble H.J (1998) Teleportation of ContinuousQuantumVariables.Phys.Rev.Lett.,80 ,869-872.

74.Hofmann H.F.,Ide T., and Kobayashi T (2000) Fidelity and infor- mation in the quantum teleportation of continuous variables Phys.Rev.A,62,062304(1-4).

( 20 00 ) Ca no n ic a l quan tum te le po r tatio n Phy s Rev.A,61 ,

79.Xu H.S., and Xu J.B (2009) Entanglement and Teleportation of PairCat States in Amplitude Decoherence Channel Comm Theor. Phys.,52 ,45-49.

80.Dirac P.A.M (1927) The Quantum Theory of the Emission and Ab- sorption of Radiation Proceedings the Royal Society of London

81.Barnett S.M., and Pegg D.T (1986) Phase in quantum optics. JournalofPhysicsA:MathematicalandGeneral,19,3849-3863.

82.Susskind L., and Glogower J (1964) Quantum mechanical phase andtimeoperator.Physics1 ,49-61.

83.Carruthers P., and Nieto M.M (1968) Phase and Angle Variables inQuantumMechanics.ReviewsofModernPhysics,40 ,411-440.

TermApplicationofSqueezedStatesofLight in a Gravitational-Wave Observatory Phys Rev Lett,110,181101(1-5).

85.Ren J.G., Xu P et al (2017) Ground-to-satellite quantum teleporta- tion.Nature,549 ,7073.

86.Dinh D.H, and Duc T.M (2016) Sum squeezing, difference squeezingandh i g h e r - o r d e r a n t i b u n c h i n g p r o p e r t i e s o f t w o - m o d e e v e n a n d o d d chargec o h e r e n t s t a t e s H u e U n i v e r s i t y

87.Genoni M.G., Palma M.L et al (2013) Detecting quantum non- GaussianityviatheWignerfunction.Phys.Rev.A87,062104(1-9).

88.Walschaers M., Fabre C et al (2017) Entanglement and WignerFunction Negativity of Multimode Non-Gaussian States Phys. Rev.Lett.,119,183601(1-5).

89.Kenfack A., and Zyczkowski K (2004) Negativity of the Wigner func- tion as an indicator of non-classicality J Opt B: Quantum Semiclass.Opt.,6 ,396-404.

90.Hoai N.T.X., and Duc T.M (2016) Nonclassical properties and tele- portationin the two-mode photon-added displaced squeezed states.Int.J.Mod.Phys.B,30,1650032(1-15).

91.Allevi A., Andreoni A et al (2010) Conditional measurements onmultimode pairwise entangledstates from spontaneous parametricdownconversion.Europhysics Letters92,20007(1-6).

92.Wang X.G (2002) Bipartite entangled non-orthogonal states J. Phys.A:Math.Gen.,35 ,165-173.

(2022).S u m s q u e e z i n g , e n t a n g l e m e n t and quantum teleportation of the superposition of photon-added paircoherent state.Journal of Physics: Conference Series,2269, 012003(1-8).

94.Meng X.G., Wang J.S et al (2008) Wigner function for the generalizeexcitedpaircoherentstate.Chin.Phys.B17,1791-1797.

95.Dat T.Q., Chuong H.S., Hung D.V., and Duc T.M (2022) Higher- order nonclassicality in superposition of three-mode photon-added triocoherentstates.Communications in Physics,32 ,141-155.

96.OpatrnT., Kurizki G., and Welsch D.G (2000) Improvement onteleportation of continuous variables by photon subtraction via con-ditionalmeasurement.Phys.Rev.A,61,032302(1-7).

97.Olivares S., Paris M.G.A., , and Bonifacio R (2003). Teleportationimprovement by inconclusive photon subtraction. Phys Rev A,67,032314(1-5).

98.Kurucz Z., Adam P et al (2005) Continuous variable remote statepreparation.Phys.Rev.A,72,052315(1-7).

Thayto ntmatr nm t ρˆph ngtr nh(2.6)voph ngtrnh(3.11),saukhaitrintrngthikthp|γ⟩ x t h e o cctrngthiFock didng|γ⟩ x =e −|z| 2 /2 Σ (z k / √ k!)|k⟩ x vi x={a,b},chngtathuc

P 2 tnh J 1 vJ 2 phn g trnh(P.3)v(P.4),chngtixttchphn∫

(P.7)Tnhngh ac ah mLaguerre L i (z)= z −i e z (d/dz) n (e −z z n+i ),vt n n!

|α| 2 = yψ ,chngtathuc α = yψ / α ∗ h o c( ∂/∂α) q = ( α ∗ ) q (∂/∂yψ) q Do tchphnp h n g trnh(P.5)c vitdi dng

Tp h n g trnh(P.10),tchphn J 1 v J 2 p h n g trnh(P.3)v( P 4 ) cchobi

Saut h a y (P 1 1) v( P 1 2 ) vophn g trnh(P.2),hmWignerc x cnhnhsau

Ngày đăng: 17/08/2023, 20:43

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w