1. Trang chủ
  2. » Giáo án - Bài giảng

Đs chuyên đề 10 phương trình bậc nhất hai ẩn hệ hai phương trình bậc nhất hai ẩn

22 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 1,66 MB

Nội dung

Chương HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Chuyên đề 10 PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN A Kiến thức cần nhớ Phương trình bậc hai ẩn x y hệ thức dạng ax  by c  1 , a, b, c số biết  a 0 hc b 0   Nếu x0 ; y0 thỏa mãn  1 cặp số  x0 ; y0  gọi nghiệm phương trình  1 Phương trình bậc hai ẩn ax  by c ln có vơ số nghiệm Tập nghiệm biểu diễn đường thẳng ax  by c , kí hiệu  d  Nếu a 0 b 0 đường thẳng  d  đồ thị hàm số y  a c x b b  Nếu a 0 b 0 phương trình trở thành x  c , đường thẳng  d  song a song trùng với trục tung  Nếu a 0 b 0 phương trình trở thành y  c , đường thẳng  d  song b song trùng với trục hoành  ax  by c Cho hệ phương trình bậc hai ẩn  1   ax  b y c   Nếu hai phương trình có nghiệm chung  x0 ; y0   x0 ; y0  gọi nghiệm hệ  1  Nếu hai phương trình cho khơng có nghiệm chung ta nói hệ  1 vơ nghiệm Giải hệ phương trình tìm tập nghiệm Tập nghiệm hệ phương trình  1 biểu diễn tập hợp điểm chung hai đường thẳng Vậy :  d  : ax  by c  d  : a x  b y c ' Vậy : ● Nếu  d  cắt  d   1 có nghiệm ● Nếu  d  //  d  hệ  1 vơ nghiệm ● Nếu  d  trùng với  d ' hệ  1 vơ số nghiệm Hai hệ phương trình gọi tương đương với chúng có tập nghiệm B Một số ví dụ Ví dụ 1: Tìm cơng thức nghiệm tổng qt phương trình sau biểu diễn hình học tập nghiệm a) x  y 3 b) x  y 8 c) x  y 6 Giải a) x  y 3  y 2 x   x  y  2   xR x  y  2 Ta có tập nghiệm phương trình cho    y 2 x   y  R Biểu diễn hình học tập nghiệm: 4 x 8  x 2 b) x  y 8    yR Ta có tập nghiệm phương trình cho là:  x 2  y  R Biểu diễn hình học tập nghiệm  xR  y  c) x  y 6    y   x  R Ta có tập nghiệm phương trình cho là:   y  Biểu diễn hình học tập nghiệm Ví dụ 2: Tìm nghiệm ngun phương trình sau: a) x  y 2 b) 38 x  117 y 15 c) 21x  18 y 4 Giải  Tìm cách giải Để tìm nghiệm nguyên phương trình ax  by c , ta thường biểu thị ẩn mà hệ số có giá trị tuyệt đối nhỏ theo ẩn Chẳng hạn câu a: - Biểu thị ẩn y theo ẩn x - Tách riêng giá trị nguyên biểu thức chứa x - Đặt điều kiện để phân số biểu thức x số nguyên t, ta phương trình bậc hai ẩn x t - Cứ tiếp tục làm ẩn biểu thị dạng đa thức với hệ số nguyên  Trình bày lời giải a) x  y 2  y  yZ  Đặt  5x x 1  x  x số nguyên  2x số nguyên 3 x Z x t  t  Z   x  3t  x 3t 1 Do y 1   3t  1  5t   x 3t   Vậy nghiệm nguyên tổng quát phương trình cho là:  y  5t   tZ  b) 38 x  117 y 15 15  117 y 15  y  x  y  y số nguyên  3y số nguyên 38 38 xZ  15  y 15  y  Z Đặt t  t  Z  38 38  15  y 38t  y   38t  15 t 5  13t  3 Ta có: t  Z   13t  Z yZ  t t  Z Đặt m  m  Z   t 3m 3 Do đó: y 5  13.3m  m 5  38m Suy ra: x    38m   3m 117 m  15  x 117 m  15  Vậy nghiệm nguyên tổng quát phương trình cho là:  y 5  38m  mZ  c) 21x  18 y 4 Với x, y số nguyên vế trái chia hết cho 3, vế phải không chia hết cho Vậy không tồn số nguyên  x; y  thỏa mãn phương trình ● Nhận xét: Câu c, ta cần ý đến tính chia hết hệ số ẩn Tổng quát Xét phương trình ax  by c , a, b, c số nguyên ƯCLN  a; b; c  1 Người ta chứng minh ƯCLN  a; b  1 phương trình ln có nghiệm, ƯCLN  a; b  d 1 phương trình ln vơ nghiệm Ví dụ 3: Trên đường thẳng x  13 y  0 , tìm điểm ngun (là điểm có tọa độ số nguyên) nằm hai đường thẳng x  15 x 40 Giải ● Tìm cách giải Bản chất tốn tìm nghiệm ngun phương trình x  13 y  0 lấy giá trị x cho  15  x  40 Do vậy: - Bước Tìm nghiệm nguyên tổng quát phương trình - Bước Xét miền giá trị  15  x  40 để tìm nghiệm ● Trình bày lời giải: Giả sử M  x; y  với x; y  Z điểm thuộc đường thẳng x  13 y  0 suy x; y nghiệm nguyên phương trình 13 y  6  3y 2 y  Ta có x  13 y  0  x  y số nguyên y số 8 nguyên x  Z  Đặt  3y Z  3y 8t  t t  t  Z    y 8t  y  3t   3 Ta có: t  Z  3t   Z yZ  t t  Z Đặt m  m  Z   t 3m 3 Do y 3.3m   m 8m  ; x 2  8m    3m 13m   x 13m   Nghiệm nguyên tổng quát phương trình là:  y 8m   mZ  Do  15  x  40   15  13m   40   11 44 m 13 13 Vì m  Z nên m   0;1; 2;3 Từ tìm bốn điểm ngun   4;   ;  9;6  ;  22;14  ;  35; 22  Ví dụ 4: Chứng minh hình chữ nhật giới hạn đường thẳng x 6 ; x 42 ; y 2 ; y 17 khơng có điểm ngun thuộc đường thẳng 3x  y 7 Giải ● Tìm cách giải Bản chất tốn chứng tỏ phương trình 3x  y 7 khơng có nghiệm nguyên thỏa mãn  x  42  y  17 Do vậy: - Bước Tìm nghiệm nguyên tổng quát phương trình - Bước Xét miền giá trị  15  x  40  y  17 để từ chứng tỏ khơng tồn x y ngun ● Trình bày lời giải Giả sử M  x; y  với x; y  Z điểm thuộc đường thẳng 3x  y 7 suy x; y nghiệm ngun phương trình Ta có 3x  y 7  xZ  Đặt  5y 1 y 2  y  y số nguyên y số nguyên 3 1 y Z 1 y t  t  Z    y 3t  y 3t  Do x 2   3t  1  t  5t   x  5t   Vậy nghiệm nguyên tổng quát phương trình cho là:  y 3t   tZ  Nếu tồn điểm nguyên thuộc đường thẳng 3x  y 7 thỏa mãn đề  x  42  y  17 , suy   5t   42  3t   17 Từ ta có:  t   Điều không xảy Vậy hình chữ nhật giới hạn đường thẳng x 6 ; x 42 ; y 2 ; y 17 khơng có điểm ngun thuộc đường thẳng 3x  y 7 Ví dụ 5: Khơng giải hệ phương trình, dựa vào hệ số phương trình hệ cho biết số nghiệm hệ phương trình sau giải thích sao?   y  b)   y    y 5  x a)   y 3x  x 1 x 3  x  y 1  c)  1  x  y  Giải  y ax  b ● Tìm cách giải Hệ phương trình viết dạng:   y a ' x  b  1 số nghiệm  2 hệ phương trình số giao điểm phương trình  1   vậy: - Nếu a a hệ phương trình có nghiệm - Nếu a a , b b hệ phương trình vơ nghiệm - Nếu a a , b b hệ phương trình có vơ số nghiệm ● Trình bày lời giải a) Hệ phương trình có nghiệm hai đường thẳng có phương trình cho hệ hai đường thẳng có hệ số góc khác (nên chúng cắt điểm nhất) b) Hệ phương trình vơ nghiệm hai đường thẳng có phương trình cho hệ hai đường thẳng khác có hệ số góc ( nên chúng song song với nhau) c) Hệ phương trình vơ số nghiệm hai đường thẳng có phương trình cho hệ hai đường thẳng trùng trùng với đường thẳng y 2 x  Ví dụ 6: Khơng giải phương trình, dựa vào hệ số phương trình hệ, cho biết số nghiệm hệ phương trình sau giải thích sao?  x  y  a)  3x  y 12  x  y 4 b)    x  y   x  y 1 c)    x  y  Giải Tìm cách giải: Cần lưu ý đến tỉ số a b c ; để rút kết luận số nghiệm a b c hệ phương trình Cụ thể là: - Nếu a b  hệ phương trình có nghiệm a  b - Nếu a b c   hệ phương trình vơ nghiệm a b c - Nếu a b c   hệ phương trình có vơ số nghiệm a b c Trình bày lời giải a) Ta có: 2  Hệ có nghiệm b) Ta có: 2   Hệ có vơ số nghiệm 2 8 c) Ta có: 1   Hệ vơ nghiệm 4 5 Ví dụ 6: Cho đường thẳng  m   x   m  1 y 1 (m tham số) a) Chứng minh đường thẳng qua điểm cố định với giá trị m b) Tìm giá trị m để khoảng cách từ O đến đường thẳng lớn Giải a) Điều kiện cần đủ để đường thẳng  m   x   m  1 y 1  1 qua điểm cố định N  x0 ; y0   m   x0   m  1 y0 1 với m  mx0  x0  my0  y0 1 với m   x0  y0  m   x0  y0  1 0 với m  x  y0 0  x    2 x0  y0  0  y0 1 Vậy đường thẳng qua điểm cố định N   1;1 với giá trị m b) - Xét m 2 , phương trình đường thẳng là: y 1 Khoảng cách từ O tới đường thẳng - Xét m 1 , phương trình đường thẳng là: x  Khoảng cách từ O tới đường thẳng - Xét m   2;1 Gọi A giao điểm đường thẳng  1 với trục tung Ta có: x 0  y  1 , OA  m m Gọi B giao điểm đường thẳng  1 với trục hoành Ta có y 0  x  1 , OB  m m Gọi h khoảng từ O đến đường thẳng  1 Ta có: 1 2    m  1   m   2m  6m  2 h OA OB 3 1  2 m     2 2  Suy ra: h 2  h  Vậy khoảng cách lớn từ O đến đường thẳng m  C Bài tập vận dụng 10.1 Tìm số tự nhiên n cho: a) n chia hết cho n  chia hết cho 25 b) n chia hết cho 21 n  chia hết cho 165 c) n chia hết cho 9; n  chia hết cho 25 n  chia hết cho Hướng dẫn giải – đáp số a) n chia hết cho 9, đặt n  9k  k  N  n  chia hết cho 25 đặt n  25m  m  N  Suy ra: 9k  25m  k  Vì m  N , k  N  Đặt 2m   N 2m  t1 t  t  N   2m  9t  m 4t  Vì t  N , m  N  Đặt 25m  2m  3m  9 t  N t1  y  y  N   t  2 y  t 2 y  v×    Suy ra: m 4  y 1  y 9 y   n  25  y    n 225 y  99  yN n chia hết cho n  chia hết cho 25 b) n chia hết cho 21, đặt n 21k  k  N  n  chia hết cho 165, đặt n  165m  m  N  Suy ra: 21k  165m 165m  21k 1 Vế trái chia hết cho 3, vế phải không chia hết cho 3, suy không tồn số tự nhiên m, k thỏa mãn 165m  21k 1 Vậy không tồn số tự nhiên n để n chia hết cho 21 n  chia hết cho 165 c) Theo câu a, n chia hết cho 9; n  chia hết cho 25 n 225 y  99  yN Để n  chia hết cho  225 y  99  4 Đặt 225 y  101 4 x  x  N   x 56 y  25  Vì y  N , x  N  y 1 y 1 y 1  N Đặt t  t  N   y  4t  y 4t  4 Do n 225  4t  1  99 900t  126  t  N  n chia hết cho 9, n  chia hết cho 25 n  chia hết cho 10.2 Tìm số tự nhiên n để 5n  số tự nhiên 17 Hướng dẫn giải – đáp số Đặt 5n  17t  2t  t  t  N   5n  17t  n  3t  17 5 Ta có t  N  3t  N , n  N  Đặt 2t  N 2t  5m  m m  m  N   2t  5m  t  2m   2 Ta có m  N  2m   N , t  N  m m  N Đặt k  k  N   m 2k 2 Suy : t 2.2k   k 5k  Do n 3  5k  1  2k 17 k   k  N  5n  số tự nhiên 17 10.3 Trên đường thẳng 11 x 18 y 120 , tìm điểm ngun (là điểm có tọa độ số nguyên) nằm hai đường thẳng y  18 y 30 Hướng dẫn giải – đáp số Giả sử M  x ; y  với x ; y  Z điểm thuộc đường thẳng 11x  18 y 120 Suy x; y nghiệm nguyên phương trình Ta nhận thấy 18y 120 chia hết 11x chia hết cho  x 6 Đặt x 6k  k  Z  thay vào  1 rút gọn ta được: 11k  y 20  y 20  11k k1 7  k  k số nguyên  4k số nguyên 3 yZ  k1 k1  Z Đặt t  t  Z   k 3t  3 Do y 7   3t  1  t 3  11t ; x 6k 6  3t  1 18t   x 18t   Nghiệm nguyên tổng quát phương trình là:  y 3  11t t  Z  Do  18  y  30  18   11t  30   27 21 t 11 11 Vì t  Z nên t  {  2;  1;0;1} Từ tìm bốn điểm nguyên   30; 25  ;   12;14  ;  6;3 ;  24;  8 10.4 Giải biện luận phương trình nghiệm nguyên theo số nguyên m a) x  11y m  b) 3x   m   y m  Hướng dẫn giải – đáp số a) x  11 y m   x m   11y ; x 2 y  Đặt m2  y t  y m   6t m2 y  t Z Do x 2  m   6t   t 2m   11t  x 2m   11t  Vậy nghiệm nguyên tổng quát phương trình là:  y m   6t t  Z  b) 3x   m   y m  Trường hợp Xét m  3k  m 3k   k  Z  Phương trình có dạng: 3x  3ky 3k   x  ky k   x k   ky Suy nghiệm nguyên tổng quát phương trình là:   y  Z Trường hợp Xét m  3k   m 3k   k  Z  Phương trình có dạng: 3x   3k  1 y 3k   x ky  k   Đặt y 1 y 1 t  t  Z   y 3t  Do x k  3t  1  k   t  3k  1 t   x  3k  1 t   Suy nghiệm nguyên tổng quát phương trình là:  y 3t  t  Z  Trường hợp Xét m  3k   m 3k   k  Z  Phương trình có dạng: x   3k   y 3k   x  k  1 y  k   Đặt y 1 y 1 t  t  Z   y 3t   x  3k   t   Suy nghiệm nguyên tổng quát phương trình là:  y 3t  t  Z  10.5 Chứng minh hình chữ nhật giới hạn đường thẳng x  ; x 23 ; y 6 ; y 60 khơng có điểm ngun thuộc đường thẳng 11 x  y 73 Hướng dẫn giải – đáp số Giả sử M  x ; y  với x ; y  Z điểm thuộc đường thẳng 11x  y 73 Suy x; y nghiệm nguyên phương trình Ta có 11x  y 73  y  Đặt 3  x  73  11x 8  x  8 3 x t  t  Z   x 3  8t Do y 8    8t   3t 5  11t  x 3  8t  Vậy nghiệm nguyên tổng quát phương trình cho là:  y 5  11t t  Z  Nếu tồn điểm nguyên thuộc đường thẳng 3x  y 7 thỏa mãn đề   x  23  y  60 , suy    8t  23   11t  60 Từ ta có:   t   t  Điều không xảy 11 Vậy hình chữ nhật giới hạn đường thẳng x  5; x 23; y 6; y 60 khơng có điểm ngun thuộc đường thẳng 11x  y 73 10.6 Xác định nghiệm hệ phương trình sau phương pháp hình học  x  y 1 a)   x  y  3 x  y  b)  2 x  y 4 Hướng dẫn giải – đáp số Rút y từ phương trình cho để có hàm số bậc biến số x , sau biểu diễn phương pháp hình học xác định nghiệm hệ a) 3x  y 1  y 3x   y  x  2 x  y   y x   y  x  Nghiệm hệ phương trình là:  x; y   1;1 3x  y   y 3x 1  y  x  2 x  y 4  y  x  Nghiệm hệ phương trình là:  x; y   1;2  10.7 Cho hai phương trình mx  y 3 3x  y n  Biết hai phương trình có vơ số nghiệm chung Hãy tính m  n Hướng dẫn giải – đáp số Từ phương trình cho, suy ra: y  m x 2  d n 8 y  x   d  Hai phương trình có vơ số nghiệm chung  d   d  trùng nhau, tức m n 8   suy m  n  5  17  Vậy m  n   10 10.8 Tìm giá trị a để hệ phương trình sau vơ nghiệm:  x  ay 1   ax  3ay 2 a  Hướng dẫn giải – đáp số  x  y 1  x 1  Xét a 0 , hệ phương trình có dạng:  0.x  3.0 y 2.0   y   Hệ phương trình vơ nghiệm Xét a 0 , hệ phương trình vơ nghiệm khi: a  a  3a 2a     không tồn a  2a  a Vậy với a 0 , hệ phương trình cho vơ nghiệm 10.9 Với giá trị a hệ phương trình sau có nghiệm nhất? vơ nghiệm?  x  y 0 a)   ax  3y 5  ax  y 0 b)  2 x  y 1 Hướng dẫn giải – đáp số a   a  1 a) Hệ có nghiệm Hệ vô nghiệm a  a 1   a  3 b) Hệ có nghiệm  x  2ay 1 10.10 Với giá trị a hệ phương trình:   3a  1 x  ay 1 a) Có nghiệm b) Vơ nghiệm c) Vô số nghiệm Hướng dẫn giải – đáp số  x  2.0 y 1  x 1  a) Xét a 0 hệ có dạng  vơ nghiệm  3.0  1 x  y 1   x 1 Xét a 0 , hệ có nghiệm 3a   a 1   3a    a  2a  1 Vậy a  0;  hệ có nghiệm  6 b) Với a 0 hệ vơ nghiệm Xét a 0 , hệ có nghiệm  1 Vậy a  0;  hệ vơ nghiệm  6 3a   a 1    3a    a  2a c) Khơng có giá trị a để hệ vô số nghiệm 10.11 Không giải phương trình, dựa vào hệ số phương trình hệ, cho biết hệ phương trình sau tương đương  x  y 1   x  y 3 vµ  x  y 2    y  y 1 Hướng dẫn giải – đáp số Hai hệ phương trình tương đương chúng vơ nghiệm 10.12 Khơng giải phương trình, dựa vào hệ số phương trình hệ, cho biết hệ phương trình sau khơng tương đương  x  y 2  x  y 1 vµ  a)   x  y   x  y 4 2 x  y 1 vµ b)   y 2 x   x  y 5  2 x  y 3 Hướng dẫn giải – đáp số a) Hệ thứ vơ nghiệm, hệ thứ hai có nghiệm Vậy hai hệ phương trình khơng tương đương b) Hệ thứ vô số nghiệm, hệ thứ hai có nghiệm Vậy hai hệ phương trình khơng tương đương 10.13 Tìm giá trị m n để hai hệ phương trình sau tương đương  x  y 2   x  y 4  mx  y 4   x   n  1 y 6 Hướng dẫn giải – đáp số Hệ thứ có nghiệm x 3; y 1 Muốn cho hai hệ tương đương hệ thứ hai phải có nghiệm x 3; y 1

Ngày đăng: 10/08/2023, 04:06

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w