1. Trang chủ
  2. » Giáo án - Bài giảng

8 bài in cho giáo viên (1)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 440,57 KB

Nội dung

BÀI GIẢNG TẬP HỢP VÀ CÁC PHÉP TOÁN CỦA TẬP HỢP BÀI : TẬP HỢP VÀ CÁC PHÉP TOÁN CỦA TẬP HỢP A TÓM TẮT LÝ THUYẾT Tập hợp  Tập hợp khái niệm tốn học, khơng định nghĩa  Cách xác định tập hợp: + Liệt kê phần tử: viết phần tử tập hợp hai dấu móc + Chỉ tính chất đăc trưng cho phần tử tập hợp  Tập rỗng: tập hợp không chứa phần tử nào, kí hiệu  Tập hợp – Tập hợp  Tập con: A  B  x  A  x  B Các tính chất: + A  A, A +     A, A + A  B, , B  C suy A  C  Tập A B  A  B B  A  x  A  x  B Một số tập tập hợp số thực  a; b   x   a  x  b  a;   x   x  a Khoảng Khoảng   ;b   x   x  b  a; b  x   a x b Đoạn Khoảng  a; b   x   a x  b  a;   x   x a Nửa khoảng Nửa khoảng  a; b  x   a  x b   ;b   x   x b Nửa khoảng Nửa khoảng Các phép toán tập hợp  Giao hai tập hợp: A  B  {x | x  A x  B}   Hợp hai tập hợp: A  B  {x | x  A x  B} Hiệu hai tập hợp: A \ B  {x | x  A x  B}  Phần bù: Cho B  A C A B  A \ B B CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI DẠNG 1: XÁC ĐỊNH TẬP HỢP Câu 1: Viết tập hợp sau cách liệt kê phần tử Câu 2: Viết tập hợp sau cách liệt kê phần tử A  x    x  x   x  3x   0 B  x   x  x  x 0 Lời giải: Lời giải:   Xét phương trình  x 0  x3 2  x  x 0 x  x  x 0  x  x  x   0  x 0 2  x  x   x  3x   0   x  3x  0   x   x 2  x  x  B  0;  1 Do x   nên Xét phương trình Trang -1- BÀI GIẢNG TẬP HỢP VÀ CÁC PHÉP TOÁN CỦA TẬP HỢP   A  ;0;    Do x   nên Câu 3: Viết tập hợp sau cách liệt kê phần tử  *  A  n    n  30 Câu 4: Viết tập hợp sau cách liệt kê phần tử C  x / x 3k , k  ,   k  12 Lời giải: *   x  12    3k  12    k  Với  n  30 n   nên chọn n 2;3; 4;5 Vậy Ta có A  2;3; 4;5 k   10;1; 2;3 Do k   nên ta chọn suy x 3k   3;0;3;6;9 C   3;0;3; 6;9 Vậy Câu 5: Viết tập hợp sau cách liệt kê phần tử Câu 6: Viết tập hợp sau cách liệt kê phần tử  1   C  x    x    x   x   0   2    D  x   x  x  1 x  0     Lời giải: Lời giải:    x  1 x  x  0 Phương trình    x  0 x x  1    2 x  20   x    x   x   0     2  x  x   x  0  x  x1 1; x      x        x 3    x  0  x  1    x  0  C  ;1     x 3 2  Vì x   nên   3  D  ;  2  Vì x   nên Phương trình     Câu 7: Viết tập hợp sau cách nêu tính chất đặc Câu 8: Viết tập hợp sau cách nêu tính chất đặc trưng trưng B  0;3;8;15; 24;35 2  A  ; ; ; ;   15 24 35  Lời giải: Lời giải: B  n  n  ,1 n 6  n  A  n  , n 6 n     DẠNG 2: CÁC PHÉP TOÁN TRÊN TẬP HỢP Câu 2: Cho tập hợp A  0;1; 2;3; 4 Câu 1: Cho hai tập hợp A  1; 2;3;4 , B  2; 4;6;8 , C  3; 4;5;6 Tìm A  B , B  2;3; 4;5;6 Tìm tập A C , B C , A  B , A C , B C ,  A  B C , A \ B, B \ A, A  B, A  B Lời giải: Trang -2- BÀI GIẢNG TẬP HỢP VÀ CÁC PHÉP TOÁN CỦA TẬP HỢP Lời giải: A \ B  0;1 B \ A  5;6 Ta có , , A  B  0;1; 2;3; 4;5;6 A  B  2;3; 4 , A  B  1; 2;3; 4;6;8 , B  C  2;3; 4;5;6;8 , A  C  1; 2;3; 4;5; 6 A  B  2; 4 A  C  3; 4 B  C  4;6 ,  A  B   C  3; 4;6 , , , , A   B  C   1; 2;3; 4;6 Câu 4: Cho A tập số tự nhiên chẵn không lớn 10, B  n   n 6 C  n   n 10 Tìm A B C A  x   x 5 Câu 3: Cho , B  x   x 3k  1, k  , k 3 Xác định A , B , A  B , A  B , A \ B , B \ A tập Lời giải: A  2; 4;6;8;10 B  0;1; 2;3; 4;5;6 Ta có , C  4;5; 6;7;8;9;10 Lời giải: B   1; 2;5;8 nên A  B   1;0;1; 2;3; 4;5;8 A  0;1; 2;3; 4;5 A  B  2;5 , A \ B  0;1;3; 4 , B \ A   1;8 , B  C  0;1; 2;3; 4;5; 6; 7;8;9;10 Do nên A   B  C   2; 4;6;8;10  A Câu 6: Cho tập hợp E  1; 2;3; 4;5;6;7;8;9 Câu 5: Cho tập hợp A  x    x  x    x   0 B  x   x 8 A  1; 2;3; 4 B  2; 4;6;8 , tập hợp , C  A  B  CE A  CE B C  x  x     x 4 Xác định CE A , CE B , E ,  C  B \C Tìm A  B , A  B , B \ C , AB Lời giải: CE A E \ A  5; 6;7;8;9 Lời giải: , suy  x  x  0  x  x    x   0   x  0   A   6;  2;  1; 2 Vậy CE B E \ B  1;3;5;7;9 CE A  CE B  5;7;9  suy A  B  1; 2;3; 4;6;8 CE  A  B  E \ A  B  5;7;9 x   x     x   0,1, 2,3, 4  x  x    Ta có B  0;1; 2;3; 4 Vậy x    x    2,  1, 0,1, 2,3, 4    x   Ta có Vậy Trang -3- C   3;  1;1;3;5;7;9  x   x   x   x 2  BÀI GIẢNG TẬP HỢP VÀ CÁC PHÉP TOÁN CỦA TẬP HỢP A  B   6;  2;  1; 0;1; 2;3; 4 A  B  2 Suy , , B \ C  0; 2; 4 , C AB  B \ C   A  B  \  B \ C    6;  2;  1;1;3 Câu 7: Xác định hai tập A , B biết A  1; 2 B  1; 2;3; 4 Câu 8: Cho hai tập hợp Tìm tất A \ B  1;5;7;8 , B \ A  2;10 , A  B  3;6;9 tập hợp X cho A  X B Lời giải: Lời giải: Các tập X cần tìm thỏa mãn u cầu tốn Theo định nghĩa phép trừ hai tập hợp, ta có  3; 4 ,  1;3; 4 ,  2;3; 4 ,  1; 2;3; 4  A \ B  1;5;7;8  A   A \ B  1;5;7;8  B  B \ A  2;10  B   B \ A  2;10  A  A  B  3;6;9  A  A  B  3;6;9  B Mặt khác, ta có  Do suy ra, tập A  A \ B    A  B   1;5;7;8;3;6;9 , B  B \ A    A  B   2;10;3;6;9 DẠNG 3: ĐOẠN – KHOẢNG – NỬA KHOẢNG B   3;  khoảng C B Xác định A  B , A  B , A \ B ,  Lời giải: A  B   5;  A  B   3;1 Ta có , , A \ B   5;  3 C B  \ B   ;  3   2;   , Câu 1: Cho đoạn A   5;1 A   1;0 B  0;1 Câu 2: Cho hai nửa khoảng A  B , A  B , C A , A \ B , B \ A  Xác định Lời giải: A  B   1;1 , A  B  0 , C A  \ A   ;  1   0;   , A \ B   1;0  , B \ A  0;1 A  0; 2 B  1;  Câu 3:Cho hai nửa khoảng C  A  B  , C  A  B  Xác định  A  x   x 4 Câu 4: Cho tập hợp , B  x   x  1 Viết tập hợp sau A  B, A  B, A \ B, C B dạng khoảng, nửa Lời giải: A  B  0;  A  B  1; 2 suy suy C  A  B    ;0   4;   C  A  B    ;1   2;   khoảng, đoạn Lời giải: A  B   2; 2    ;1   ; 2 A  B   2;     ;1   2;1 A \ B   2; 2 \   ;1  1;  Trang -4- , , , BÀI GIẢNG TẬP HỢP VÀ CÁC PHÉP TOÁN CỦA TẬP HỢP C B  1;  A   ; m  Câu Cho tập hợp B  3m  1;3m  3 A  x   x a B  x   x b Tìm m để A  C B Tìm a , b để A  X B  X đoạn có chiều dài Lời giải: C B   ;3m  1   3m  3;   Ta có  Lời giải: A  C B  m 3m   m  Ta viết lại X , A , B sau Suy X   5;5 A   ; a  B  b;   , m giá trị cần tìm Vậy  Tìm a để A  X đoạn có chiều dài Câu 5: Cho tập hợp X  x   x  25 0 , Trước hết ta tìm a để A  X đoạn A  X  X   5;5 ° Nếu a 5 Trong trường hợp A  X có độ dài 10 nên không thỏa mãn ° A  X   5; a  Nếu  a  Trong trường hợp A  X có độ dài toán a     a  Do yêu cầu  a  7  a 2 : thỏa mãn điều kiện  a  ° Nếu a   A  X  : khơng phù hợp với u cầu tốn  Tìm b để B  X đoạn có chiều dài Trước hết ta tìm b để B  X đoạn B  X  X   5;5 ° Nếu b  Trong trường hợp B  X có độ dài 10 nên không thỏa mãn ° B  X  b;5 Nếu   b 5 Trong trường hợp B  X có độ dài  b Do u cầu tốn   b 9  b  : thỏa mãn điều kiện   b 5 ° Nếu b  B  X  : khơng phù hợp với u cầu tốn Trang -5- BÀI GIẢNG TẬP HỢP VÀ CÁC PHÉP TOÁN CỦA TẬP HỢP Vậy a 2 , b  giá trị cần tìm thỏa mãn yêu cầu toán Câu 8: Cho hai tập hợp A  B   3;1 Tìm m để Lời giải: Điều kiện: m   A   4;1 B   3; m , Câu 7: Cho hai tập hợp Tìm m để A \ B  Vậy   Đối chiếu điều kiện, ta m  Vậy m  thỏa mãn yêu cầu toán a0  B  m  7; m  m   m 4 Lời giải: Để hai tập hợp A B giao khác rỗng 9a   9a  a (do a  ) Điều kiện: m    m  Để A \ B  A  B , tức Câu 10: Cho số thực a  hai tập hợp 4  B  ;   A   ;9a  a  Tìm a để A  B  , a2  B  3;   Lời giải: A  B   3;1 Để m 1 : thỏa mãn điều kiện Vậy m 1 giá trị cần tìm  A  m  1;5  Câu 9: Cho hai tập hợp Tìm m để B  A Lời giải: Điều kiện: m   A   4;3 Để B  A  m      m 3 m 3  m 3  m 3 Vậy m 3 thỏa mãn yêu cầu toán a0 thỏa mãn yêu cầu toán Câu 11: Cho hai tập hợp B  x   x  m A   ; m  1 A  2; m  1 Câu 12: Cho hai tập hợp 1  B  ;   2  Tìm m để A  B có phần tử Lời giải: Điều kiện:  m   m  Tìm m để A  B  Lời giải:  m  B  ;   A   ; m  1   Ta viết lại Để A  B  m m 1   2m   m  Trang -6-  m7 Để A  B có phần tử 1 m    m  2 : không thỏa mãn điều kiện Vậy không tồn giá trị m để thỏa mãn yêu cầu toán

Ngày đăng: 10/08/2023, 02:49

w