1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Hsg huyện bình lục 2016 2017

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 232,5 KB

Nội dung

ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2016 - 2017 Mơn: Tốn (Thời gian làm 120 phút (không kể thời gian giao đề ) Bài 1: (4,5 điểm) a, Thực phép tính: A 212.35 - 46.92  3 + - 510.73 - 255.492  125.7  + 59.143 b, So sánh: 17 + 26 +1 99 1 1 + + + + + > 10 c, Chứng minh: 99 100 Bài : (4,5 điểm) a, Tính giá trị biểu thức C = 2x5 – 5y3 + 2017 x, y thỏa mãn: x -1 + (y + 2)20 = b, Ba lớp 7A, 7B, 7C mua số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 sau chia theo tỉ lệ 4:5:6 nên có lớp nhận nhiều dự định gói Tính tổng số gói tăm mà ba lớp mua c, Chứng minh với số nguyên dương n 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 Bài 3: (3,0 điểm) 4 a, Chứng minh ba đơn thức - x y ; - x y ; 2xy khơng thể có giá trị âm b, Tìm nghiệm đa thức Q(x) = x + 6x - Bài 4: (6,5 điểm) Cho tam giác ABC (AB > AC ), M trung điểm BC Đường thẳng qua M vng góc với tia phân giác góc A H cắt cạnh AB, AC E F Chứng minh : a, EH = HF    b, 2BME = ACB -B FE c, + AH = AE d, BE = CF Bài : (1,5 điểm) Gọi a, b, c độ dài cạnh tam giác Chứng minh a b c + + Mà 10 = 100  99 Vậy: 17  26  > 99 Ta có: 1c) 1,5đ Điểm 10 0,5 17  26  > 16  25  4   10 1 1 1  ;  ; ;  100 100 99 100 1    100 10 100 100 0,5 0,5 1 1      10 100 0,5 Do x  ≥ 0; (y + 2)20 ≥ Þ x  + (y + 2)20 ≥ với x, y Kết hợp x  + (y + 2)20 = suy x  = (y + 2)20 = Û x = 1; y = - Giá trị biểu thức :C=2x5 – 5y3 + 2017 x = 1; y = - là:C=2.15 – 5.(-2)3 + 2017 = + 40 + 2017 = 2059 Vậy C=2059 Gọi tổng số gói tăm lớp mua x ( x số tự nhiên khác 0) Số gói tăm dự định chia chia cho lớp 7A, 7B, 7C lúc đầu là: a, b, c Ta có: a b c a b c x 5x 6x x 7x     Þ a  ;b   ;c  18 18 18 18 18 0,5 0,5 0,5 (1) 0,5 đ 0,5đ 0,5 đ 0,5đ Số gói tăm sau chia cho lớp a’, b’, c’, ta có: a , b, c, a ,  b,  c , x 4x 5x x 6x     Þ a ,  ; b,   ; c ,  15 15 15 15 15 (2) So sánh (1) (2) ta có: a > a’; b=b’; c < c’ nên lớp 7C nhận nhiều lúc đầu 0,5đ 6x x x  4 Þ 4 Þ x 360 15 18 90 Vây: c’ – c = hay 0,5đ Vậy số gói tăm lớp mua 360 gói 2c) 1,5đ 0,5đ 3n 2  2n2  3n  2n = 3n 2  3n  2n2  2n = 3n (32  1)  2n (2  1) = 3n 10  2n 5 3n 10  2n 10 0,5đ = 10( 3n -2n-1) Vậy 3n 2  2n2  3n  2n  10 với n số nguyên dương 0,5đ Giả sử đơn thức có giá trị âm Þ tích đơn thức có giá trị âm  3a) 1,5đ 0,5đ (1)  1  4 3 4 8 Mặt khác:   x y    x y   2xy       1  x x x   y y y  x y    2  4 Vì x8y8   x; y nên   x y    x y   2xy    x; y  (2)  Ta thấy (1) mâu thuẫn với (2) Þ điều giả sử sai Vậy ba đơn thức  3b) 1,5đ 0,5đ 0,5đ x y ;  x y3 ;2xy khơng thể có giá trị âm Cho Q ( x)  x  x  0 Tìm hai nghiệm x=1 x=-7 1,5đ A 4) 0,5đ E B 0,5đ M C H D F 4a) 1,5đ 4b) 1,5đ 4c) 1,5đ C/m AEH AFH (g-c-g) Suy EH = HF (đpcm)  F  Từ AEH AFH Suy E   Xét CMF có ACB góc ngồi suy CMF  ACB  F  góc ngồi suy BME    B  BME có E E 1    )  (E   B  )  BME ( ACB  F CMF   (đpcm) hay 2BME  ACB  B Áp dụng định lí Pytago vào tam giác vuông AFH : 1.5đ 1.5đ 1.5đ FE  AH  AE (đpcm)  F  Từ AHE AHF ( g  c  g ) Suy AE = AF E Từ C vẽ CD // AB ( D  EF ) m BME CMD( g  c  g ) Þ BE CD (1)  có E CDF (cặp góc đồng vị) ta có HF2 + HA2 = AF2 4d) 1,5đ C/ 0,5đ 0,5đ   CDF F Þ CDF cân Þ CF = CD ( 2) Từ (1) (2) suy BE = CF a a a a 1Þ  (1) b c b c bc a b b b b 1Þ  Tương tự, ta có: (2) ca c  a c  a b c c c c 1Þ  (3) a b a b a b c a b c 2a  2b  2c    2 Từ (1), (2) (3) suy ra: b c c a a b a b c Vì a  b  c nên 1,5đ hay 0,5đ 0,5đ 0,5đ 0,5đ

Ngày đăng: 26/07/2023, 15:01

w