1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương trình vi tích phân phi tuyến loại hypebolic

126 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 126
Dung lượng 671,3 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG TRÌNH VI TÍCH PHÂN PHI TUYẾN LOẠI HYPEBOLIC LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Năm 1936, G Birkhoff giới thiệu nhóm tơpơ (xem [6]) Sau đó, khơng gian cầu trường được M M Choban đưa vào năm 1987 (xem [7]) Đến năm 1989, V V Uspenskij chứng minh nhóm tơpơ khơng gian cầu trường khơng gian cầu trường khơng nhóm tơpơ (xem [21]) Tiếp đó, A V Arhangel’skii M Tkachenko giới thiệu khái niệm nhóm paratơpơ, chứng minh số tính chất nhóm tơpơ nhóm paratơpơ, đồng thời nhóm tơpơ nhóm paratơpơ điều ngược lại không 937 2 Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét Từ mệnh đề 43 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét (i) khơng Ω khơng lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0,  x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L  x 1/β √ , Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn x > y > L điều mấu thuẫn với bất đẳng thức trước (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo khơng N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) khơng gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (1) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (2) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (45) (46), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, (3) theo (46), (fh )h dãy Cauchy (C0 (Ω), ∥.∥∞ ) Khi đó, tồn f ∈ C0 (Ω) thỏa mãn fh → f Ω Theo (47), ta Lip(f ) ≤ L, f ∈ Ω Lấy qua giới hạn (46), k → ∞, ϵ > tồn h = h(ϵ) ∈ N cho |fh (x) − f (x)| + fh (y) − f (y) − fh (z) + f (z) ≤ϵ y−z ∀h > h, x, y, z ∈ Ω, y ̸= z Điều có nghĩa lim ∥fh − f ∥Lip = h→∞ Từ tập hợp hàm đa thức chứa Lip(Ω), Lip(Ω) vô hạn chiều Cuối cùng, ta cần phải chứng minh khơng phải khơng gian Hilbert, lập luận tương tự trường hợp trước, cách sử dụng đẳng thức hình bình hành Theo hệ mệnh đề 33 ta kết sau Hệ Bao hàm C1 (Ω) ⊂ Lip(Ω) ánh xạ song Lipszhitz, nghĩa ∥f ∥C1 ≤ ∥f ∥Lip ≤ L∥f ∥C1 L ∀f ∈ C1 (Ω), nghiêm ngặt, biết Ω ⊂ Rn tập lồi, mở bị chặn Đặc biệt, C1 (Ω) không gian đóng (Lip(Ω), ∥.∥Lip ) Chứng minh Ta chứng minh khẳng định trường hợp n = Ω = (a, b) Theo mệnh đề 33 nhận xét 23 (ii), ta cần quan hệ bao hàm phép đẳng cự Điều suy Bài tập Nếu f ∈ C1 ([a, b]) ∥f ∥Lip = ∥f ∥C1 Tính compact Lip(Ω) Định lý Cho Ω ⊂ Rn tập mở bị chặn, giả sử F = BLip(Ω) := {f ∈ Lip(Ω) : ∥f ∥Lip ≤ 1} Khi BLip(Ω) compact (Lip(Ω), ∥.∥∞ ) Chứng minh Ta cần F compact (C0 (Ω), ∥.∥∞ ) Áp dụng định lý Arzelà - Ascoli (Định lý ??) Chứng minh (i) F bị chặn (C0 (Ω), ∥.∥∞ ): hiển nhiên theo định nghĩa (ii) F đóng (C0 (Ω), ∥.∥∞ ): nghĩa là, (fh )h ⊂ F với ∥fh − f ∥∞ , f ∈ F Thật fh ∈ FLef trightarrow|fh (x)|+ |fh (y) − fh (z)| ≤1 y−z ∀h, x, y, z ∈ Ω với y ̸= z Lấy qua giới hạn, h → ∞, ta |f (x)| + |f (y) − f (z)| ≤1 y−z ∀x, y, z ∈ Ω với y ̸= z từ f ∈ F (iii) F liên tục Ω Thật vậy, đủ để nhận thấy rằng, theo định nghĩa |f (y) − f (z)| ≤ |y − z| ∀y, z ∈ Ω, f ∈ F Ta có điều phải chứng minh Nhận xét Chú ý BC1 (Ω) := {f ∈ C1 (Ω) : ∥f ∥C1 ≤ 1} không compact (C1 (Ω), ∥.∥∞ ) Đây đặc trưng tốt có Lip(Ω) khơng có C1 (Ω) Tính tách (Lip(Ω), ∥.∥Lip ) Định lý Cho Ω ⊂ Rn tập mở bị chặn Khi (Lip(Ω), ∥.∥Lip ) khơng tách Chứng minh Ta cần tồn họ tách rời không đếm {Uα : α ∈ I} tập mở (Lip(Ω), ∥.∥Lip ) (Mệnh đề 31) Ta chia chứng minh thành hai bước Bước 1: Giả sử n = Ω = (a, b) ta chứng minh kết luận Cho {uα : α ∈ (a, b)} ⊂ (Lip(a, b)) họ hàm uα (x) := |x − α| x ∈ (a, b), α ∈ I := (a, b) Ta chứng minh ∥uα − uβ ∥Lip ≥ Lip(uα − uβ ) ≥ α ̸= β (4) Thật  |uα (x) − uβ (x) − uα (y) + uβ (y)| Lip(uα − uβ ) = sup : x, y ∈ (a, b), x ̸= y |x − y| |uα (α) − uβ (α) − uα (β) + uβ (β)| |α − β| =2 = |α − β| |α − β|  ≥ Vì họ Uα := {f ∈ Lip((a, b)) : ∥f − uα ∥Lip < ∀α ∈ I} Ta điều mong muốn Bước 2: Giả sử Ω tập mở bị chặn Từ Ω mở, tồn hình cầu mở (a1 , b1 ) × · · · × (an , bn ) ⊂ Ω Cho {fα : α ∈ (a1 , b1 )} ⊂ Lip(Ω) họ hàm định nghĩa fα (x) := uα (x1 ) x = (x1 , x2 , , xn ) ∈ Ω, α ∈ I := (a1 , b1 ), uα hàm biến theo định nghĩa bước Theo (48) ta được, α ̸= β Lip(fα − fβ , Ω) ≥ Lip(uα − uβ , (a1 , b1 )) ≥ Vì vậy, họ Uα := {f ∈ Lip(Ω) : ∥f − fα ∥Lip < 1} ∀α ∈ I Ta điều cần chứng minh Ta xem xét lớp Lip(Ω) hàm liên tục Lipschitz f : Ω → R mà định nghĩa thỏa mãn ước lượng |f (x) − f (y)| < C|x − y| ∀x, y ∈ Ω (L) Với C > Giống hàm thỏa mãn (L), hàm thỏa mãn tính chất (H) quan trọng, hàm thỏa mãn tính chất (H) gọi hàm thỏa mãn điều kiện Holder với số mũ α |f (x) − f (y)| ≤ C|x − y|α ∀x, y ∈ Ω (H) với số C, α > Bài tập Cho Ω ⊂ Rn tập mở liên thông giả sử (H) với C > α > Khi f ≡ const Do điều kiện Holder khơng cịn ý nghĩa cho hàm với số mũ lớn tập mở liên thông Định nghĩa Cho A ⊂ Rn , hàm f : A → R gọi liên tục Holder với mũ α > thỏa mãn (H) với sơ C > Khơng gian hàm p-khả tích Lp (Ω) Ta nhớ lại khơng gian hàm p-khả tích độ đo Lebesgue n chiều Định nghĩa Cho A ⊂ Rn tập đo Lebesgue p ∈ [1, ∞], Lp (A) := {f : A → R : f đo Lebesgue ∥f ∥Lp < +∞} ∥f ∥Lp Z 1/p   |f (x)|p dx = ∥f ∥Lp (A) := A   ≤ p ≤ ∞ inf{M > : |f (x)| ≤ M, x ∈ A} p = ∞ Số ∥f ∥Lp gọi chuẩn Lp f A Định lý (Fisher - Riesz) (Lp (A), ∥.∥Lp ) không gian Banach ≤ p ≤ ∞ Hơn L2 (A) khơng gian Hilbert với tích vơ hướng Z (f, g)L2 := f g dx f, g ∈ L2 (A) A Theo kết định lý Riesz - Fisher ta thu kết hữu ích Định lý Cho Ω ⊂ Rn tập mở, (fh )h ⊂ Lp (Ω) f ∈ Lp (Ω) với ≤ p ≤ ∞ Giả sử lim ∥fh − f ∥Lp (Ω) = h→∞ Khi đó, tồn dãy (fhk )k hàm g ∈ Lp (Ω) thỏa mãn (i) fhk (x) → f (x) hầu khắp nơi x ∈ Ω (ii) |fhk (x)| ≤ g(x) hầu khắp nơi x ∈ Ω, ∀k Nhận xét Nó khơng cịn giữ ý nghĩa (MC) ⇒ fh (x) → f (x) hầu khắp nơi x ∈ Ω Nhận xét Chú ý C0 ⊂ Lp (Ω) với p ∈ [1, ∞], với Ω ⊂ Rn tập mở bị chặn, khơng quan hệ bao hàm khơng giữ giữ quan hệ bao hàm C0c (Ω) ⊂ Lp (Ω) với p ∈ [1, ∞] tập mở Ω, C0c (Ω) := {f ∈ C0 (Ω) : spt(f ) compact chứa Ω} spt(f ) := Bao đóng{x ∈ Ω : f (x) ̸= 0} 0⩽l ⩽ −1 i X |CDn (ril )| + n −1 i 0⩽l⩽ Ta xét hai trường hợp n Trường hợp 1: n lẻ Khi đó, theo Mệnh đề 35 ta có n  n X il |CDn (r )| = n 1⩽l⩽ −1 i X 0⩽l⩽ Từ suy X − |R1 | = n |CDn (ril+j s)| = n −1 i |CDn (x)| = 2n + n x∈Ui,j Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = i |Ui,j ||Dn | n i i |CDn (ril+j s)| n −1 i  −1 , n 2n |Til+j | = i i  −1 + |CDn (x)| = x∈Ui,j 2n n(n + i + 2) = i i n+i+2 n(n + i + 2) = 2n i 4n 2n i Trường hợp 2: n chẵn Ta xét hai trường hợp i n Trường hợp 2a: i ∤ Khi đó, theo Mệnh đề 35 ta có X |CDn (ril )| = 1⩽l⩽ ni −1 X 0⩽l⩽ ni −1 n i  − |R1 | = n |CDn (ril+j s)| = n i  −1 , 4n n U n2 ,il+j = i i 37 Từ suy X |CDn (x)| = 2n + n n x∈Ui,j Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = |Ui,j ||Dn | i  −1 + |CDn (x)| = x∈Ui,j 4n n(n + i + 4) = i i n(n + i + 4) n+i+4 = 2n i 4n 2n i n Trường hợp 2b: i Khi đó, theo Mệnh đề 35 ta có X X n |CDn (ril )| = CDn (r ) + |CDn (ril )| 1⩽l⩽ ni −1 n l̸= 2i 1⩽l⩽ ni −1 = |Dn | + X n i − |R1 | = 2n + n |CDn (ril+j s)| = 0⩽l⩽ ni −1  n i  −2 = n2 , i 4n n U n2 ,il+j

Ngày đăng: 05/07/2023, 18:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w