1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ứng dụng lí thuyết điểm bất động trong hình nón vào phương trình vi phân phi tuyến

101 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 101
Dung lượng 585,31 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: ỨNG DỤNG LÍ THUYẾT ĐIỂM BẤT ĐỘNG TRONG HÌNH NĨN VÀO PHƯƠNG TRÌNH VI PHÂN PHI TUYẾN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Qua việc hoàn thành luận văn, tác giả bắt đầu làm quen với việc nghiên cứu cách có hệ thống, có phương pháp có định hướng rõ ràng Các kinh nghiệm thu quý báu tác giả trình học tập nghiên cứu sau Các khó khăn chủ yếu mà tác giả gặp phải đánh giá trung gian phức tạp việc chứng minh định lí, điều xuất phát từ điều kiện biên ban đầu phức tạp Tuy nhiên luận văn thu số kết có ý nghĩa, sở tham kh?o cơng trình nghiên cứu quan trọng công bố trước Các kết sử dụng nghiên cứu tốn va chạm đàn hồi có lực cản nhớt mặt bên Việc khai triển tiệm cận xấp xỉ theo tham số bé phát triển từ cơng trình [12], cho phép đánh giá gần nghiệm toán theo điều kiện cho trước Tuy nhiên khn khổ có hạn luận văn nên tác giả chưa có dịp đề cập đến vấn đề đánh giá sai số xấp xỉ theo tham số bé bậc khai triển chưa tìm hiểu cặn kẽ khả ứng dụng kết thu toán vật lý lĩnh vực khác 398 2 Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa Cho R vành có đơn vị 1R Một R-mơđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-môđun trái Cho R, S hai vành Nhóm aben (M, +) song môđun R-bên phải S -bên trái (ký hiệu S MR ) a) M R-môđun phải M S -môđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M ) Định nghĩa Cho M R-môđun phải Tập A M gọi môđun M (ký hiệu A ≤ M hay AR ≤ MR ), A R-môđun phải với phép toán cộng nhân hạn chế A Định nghĩa (1) Môđun MR gọi đơn M ̸= với A ≤ M A = A = M , nghĩa M ̸= M có hai mơđun M (2) Vành R gọi đơn R ̸= với A ≤R RR A = A = 0, nghĩa R ̸= R có hai iđêan hai phía R (3) Mơđun A ≤ M gọi môđun cực tiểu môđun M A ̸= với B ≤ M thỏa mãn B < A B = (4) Tương tự, môđun A ≤ M gọi môđun cực đại A ̸= M với B ≤ M thỏa mãn B > A B = M Bổ đề MR đơn M ̸= ∀m ∈ M, m ̸= M = mR Cho MR N ≤ MR Vì N nhóm nhóm cộng aben M nên nhóm thương M/N nhóm aben (theo phần lý thuyết nhóm) Các phần tử M/N lớp ghép x + N N M phép toán cộng (x + N ) + (y + N ) = x + y + N Ta cần xây dựng phép nhân môđun để M/N trở thành môđun phải Định lý Cho MR N ≤ M (i) Quy tắc M/N × R → M/N cho (m + N, r) → (m + N )r = mr + N phép nhân môđun (ii) Nhóm aben M/N với phép tốn nhân mơđun trở thành R-môđun phải Định nghĩa M/N xác định Định lý 11 gọi môđun thương môđun M môđun N ĐỊNH LÝ LAGRANGE Định lý (Định lý Lagrange) Giả sử hàm số f liên tục đoạn [a, b], khả vi khoảng (a, b) Khi tồn c ∈ (a, b) cho: f ′ (c) = f (b) − f (a) b−a Chứng minh Xét hàm số   f (b) − f (a) g(x) = f (x) − (x − a) + f (a) b−a Do hàm số f (x) x − a liên tục đoạn [a, b], khả vi khoảng (a, b) nên hàm số g(x) liên tục đoạn [a, b] khả vi khoảng (a, b) Mặt khác g(a) = g(b) = Theo định lý Rolle, tồn c ∈ (a, b) cho g ′ (c) = Nhưng ta có g ′ (x) = f ′ (x) − f (b) − f (a) b−a Suy f ′ (c) = f (b) − f (a) b−a Ta có điều phải chứng minh Ý nghĩa hình học định lý Lagrange Cho C đường cong trơn với hai đầu mút A, B Khi C tồn điểm mà tiếp tuyến C điểm song song với AB Nhận xét Thông qua cách chứng minh định lý Lagrange hệ định lý Rolle Tuy nhiên định lý Rolle lại trường hợp riêng định lý Lagrange giá trị hai đầu mút (tức f (a) = f (b)) Sau ta trình bày công thức Lagrange dạng khác Giả sử ξ ∈ (a, b) Đặt θ = ξ−a Khi đó: b−a ξ = a + θ(b − a) 0

Ngày đăng: 03/07/2023, 08:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN