1. Trang chủ
  2. » Luận Văn - Báo Cáo

Toán tử tuyến tính hoàn toàn liên tục trong không gian hilbert và ứng dụng vào phương trình vi phân

88 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: TOÁN TỬ TUYẾN TÍNH HỒN TỒN LIÊN TỤC TRONG KHƠNG GIAN HILBERT VÀ ỨNG DỤNG VÀO PHƯƠNG TRÌNH VI PHÂN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Đề tài nghiên cứu luận văn thạc sĩ khoa học “ Tính chất ánh xạ thương– dãy”đã đạt số kết sau đây: - Trình bày lại cách có hệ thống chứng minh chi tiết số kết không gian topo, khái niệm tập đóng, tập mở, tập compact, phần bao đóng với tính chất chúng - Trình bày số tiên đề tách, không gian compact ánh xạ liên tục với số tính chất chúng - Trình bày cách có hệ thống chứng minh chi tiết kết ánh xạ liên tục theo dãy, ánh xạ thương, ánh xạ tiền dãy, ánh xạ thương- dãy - Trình bày cách có hệ thống chứng minh chi tiết kết đặc trưng ánh xạ thương- dãy mối quan hệ ánh xạ thương- dãy với bất biến cs*- mạng, cs’-mạng, wsn-mạng thông qua ánh xạ thương- dãy 970 2 ĐỊNH LÝ CAUCHY Định lý (Định lý Cauchy) Giả sử hàm số f g liên tục [a, b], khả vi khoảng (a, b) g ′ (x) ̸= với x ∈ (a, b) Khi tồn c ∈ (a, b) cho: f ′ (c) f (b) − f (a) = ′ g(b) − g(a) g (c) Chứng minh Trước hết ta nhận xét g(a) ̸= g(b) Nghĩa công thức kết luận định lý ln ln có nghĩa Thật vậy, giả sử g(a) = g(b) Khi theo định lý Rolle, tồn ξ ∈ (a, b) cho g ′ (ξ) = Điều mâu thuẫn với giả thiết g ′ (x) ̸= với x ∈ (a, b) Xét hàm số F (x) = [f (a) − f (b)]g(x) − [g(a) − g(b)]f (x) Do hàm f (x), g(x) liên tục đoạn [a, b] khả vi khoảng (a, b) nên hàm số F (x) có tính chất Mặt khác, F (a) = F (b) Theo định lý Rolle, tồn c ∈ (a, b) cho F ′ (c) = Nhưng ta có F ′ (x) = [f (a) − f (b)]g ′ (x) − [g(a) − g(b)]f ′ (x) Suy F ′ (c) = [f (a) − f (b)]g ′ (c) − [g(a) − g(b)]f ′ (c) = Từ ta nhận điều phải chứng minh Nhận xét Định lý Lagrange trường hợp riêng định lý Cauchy g(x)=x Chú ý: Các định lý Rolle, Lagrange, Cauchy khơng cịn điều kiện giả thiết không thỏa mãn Nghĩa hàm f g không khả vi khoảng (a, b) hay không liên tục đoạn [a, b] định lý khơng Biểu diễn ∆(R) tính chất Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) iđêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) ru−1 + ∈ U (R) u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆(R) nhóm với phép cộng R Hơn rs = r(s + 1) − r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) suy ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược Y Y lại hiển nhiên Y Y Y (5) Lấy ri ∈ ∆( Ri ) Khi ri + U ( Ri ) ⊆ U ( Ri ) Vì Y U( i∈IY Ri ) = i∈I U (Ri )) ⊆ i∈I U (Ri ) nên i∈I Y Y ri + i∈I Yi∈I i∈I Y i∈I i∈I U (Ri ) ⊆ U (Ri ) hay U (Ri ), suy ri +U (Ri ) ⊆ U (Ri ), ∀i ∈ I nên i∈I i∈IY Y i∈I ri ∈ (ri + Yi∈I ∆(Ri ) i∈I Chiều ngược lại tương tự Cho e phần tử lũy đẳng vành R Khi phần tử − 2e khả nghịch R Từ Bổ đề 10 (2) ta suy hệ sau Hệ Cho R vành (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý Cho R vành có đơn vị T vành R sinh U (R) Khi (1) ∆(R) = J(T ) ∆(S) = ∆(R), với S vành tùy ý R thỏa mãn T ⊆ S ; (2) ∆(R) Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên phần tử T viết thành tổng hữu hạn phần tử khả nghịch R Do đó, theo Bổ đề 10 (2) suy ∆(T ) iđêan T Theo Bổ đề 10 (4) suy ∆(T ) = J(T ) Hơn ∆(T ) = ∆(R) nên ∆(R) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai phần tử khả nghịch Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆(R) Jacobson R theo Bổ đề 10 (2) ∆(R) đóng với phép nhân phần tử khả nghịch trái phải R Bây giờ, ta giả sử S Jacobson chứa R đóng với phép nhân phần tử khả nghịch Ta phải S ⊆ ∆(R) Thật vậy, s ∈ S u ∈ U (R), su ∈ S = J(S) Do su tựa khả nghịch S nên + su ∈ U (R) Theo Bổ đề 10 (1) s ∈ ∆(R) hay S ⊆ ∆(R) Từ đặt trưng ∆(R) Định lý 45 (2) ta có hệ sau Hệ Giả sử R vành mà phần tử biểu diễn thành tổng phần tử khả nghịch Khi ∆(R) = J(R) Định lý cổ điển Amitsur nói Jacobson F -đại số R trường F lũy linh, với điều kiện dimF R < |F | Áp dụng Định lý 45 (1) ta thu hệ sau Hệ Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Cho R vành không thiết phải có đơn vị S vành R, ta ký hiệu Sˆ vành R sinh S ∪ {1} Mệnh đề Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa mãn U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S); [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa mãn I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề 10 ∆(R) [ ∩ U (R), r ∈ ∆(R) k ∈ Z Ta Lấy u = r + k · ∈ ∆(R) ¯ −1 = (u − k)u ¯ −1 = k¯ = k · ∈ U (R) Ta có u − k¯ = r ∈ ∆(R), − ku ¯ −1 = − (1 − ku ¯ −1 ) ∈ U (R), suy ru−1 ∈ ∆(R) theo Bổ đề 10 (2) Khi ku k¯ ∈ U (R) Vì ∆(R) đóng với phép nhân phần tử khả nghịch nên ta áp dụng phần chứng minh v = uk¯−1 = + rk¯−1 [ , nghĩa u−1 k¯ = s + ¯l, với s ∈ ∆(R) l ∈ Z Suy u−1 k¯ = v −1 ∈ ∆(R) [ , U (R) ∩ ∆(R) [ ⊆ U (∆(R)) [ sk¯−1 ∈ ∆(R), u−1 = sk¯−1 + k¯−1 ¯l ∈ ∆(R) [ ⊆ U (R) ∩ ∆(R) [ dễ thấy Chiều ngược lại U (∆(R)) ¯ = (3) Ta ký hiệu ¯ phép chiếu từ R lên R/I Lưu ý, I ⊆ J(R), U (R) U (R) ¯ u ∈ U (R) Khi r¯ + u¯ ∈ U (R) ¯ có phần tử Lấy r¯ ∈ ∆(R) v ∈ U (R) j ∈ I thỏa mãn r + u = v + j Hơn v + j ∈ U (R), ¯ = ∆(R) Vì U (R) ¯ = U (R) nên chiều ngược lại I ⊆ J(R) Suy ∆(R) dễ thấy Áp dụng mệnh đề ta có hệ sau [ = ∆(R), nghĩa ∆ Hệ Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng [ , ∆(R) ⊆ T Chứng minh ∆(R) Jacobson T = ∆(R) Vì ∆(R) chứa tất phần tử lũy linh nên T /∆(R) đẳng cấu với Z Zn := Z/nZ, với n > nhân tử bình phương Theo Mệnh đề 26 (3) Hệ 11 ta có ∆(T )/∆(R) = ∆(T /∆(R)) = J(T /∆(R)) = hay ∆(T ) = ∆(R) Từ Mệnh đề 26 (1), áp dụng cho S = Z(R) tâm R, ta có hệ sau Hệ ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Ký hiệu ( R[[x]] = {a0 + a1 x + a2 x2 + · · · |ai ∈ R} = ∞ X ) xi |ai ∈ R i=0 Mỗi phần tử f ∈ R[[x]], f = ∞ X xi với x0 = gọi chuỗi lũy i=0 thừa hình thức biến x với hệ tử thuộc R Ta định nghĩa phép cộng ∞ ∞ X X i phép nhân, lấy f, g ∈ R[[x]], f = x , g = bi xi Ta định i=0 i=0 nghĩa f = g = bi với i = 0, 1, ! ∞ ∞ i X X X (ai + bi )xi , f g = f +g = i=0 ai−j bj i=0 xi j=0 Với phép tốn R[[x]] vành giao hốn có đơn vị Cho vành R, ký hiệu Tn (R) tập tất ma trận tam giác cấp n vành R, Jn (R) iđêan Tn (R) bao gồm tất ma trận tam giác cấp n thực Dn (R) vành ma trận đường chéo cấp n Từ Mệnh đề 26 (3) ta suy trực tiếp hệ sau Hệ Cho R vành tùy ý Khi đó, khẳng định sau (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ Cho R vành Khi đó, ∆(R) = J(R) ∆(R/J(R)) = Một vành R có hạng ổn định a, x, b ∈ R thỏa mãn ax + b = 1, tồn y ∈ R cho a + by khả nghịch R Định lý sau vài lớp vành mà ∆(R) = J(R) Định lý ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với tích vành ma trận thể (2) R vành nửa địa phương (3) R vành clean thỏa mãn ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có hạng ổn định (6) R = F G nhóm đại số trường F Chứng minh (1) Giả sử R đẳng cấu với tích vành ma trận thể Theo Hệ 16 ta cần ∆(R/J(R)) = Để làm điều này, ta giả sử J(R) = 0, nghĩa R tích vành ma trận thể Nếu R vành ma trận Mn (S), với S vành chứa đơn vị n ≥ Theo Định lý 2, phần tử R tổng ba phần tử khả nghịch, theo Hệ 11 ∆(R) = J(R) = Khi S thể rõ ràng ∆(S) = Do (1) suy trực tiếp từ Bổ đề 10 (5) (2) Là trường hợp đặc biệt (1) (3) Giả sử R vành clean  thỏa mãn ∈U (R) Nếu e ∈ R lũy đẳng 1 − (1 − 2e) tổng hai phần tử khả 2 nghịch Điều có nghĩa phần tử R tổng ba phần tử khả nghịch Theo Hệ 11 ta suy ∆(R) = J(R) (4) Giả sử U (R) = 1+U (R) Giả sử R U J -vành Khi đó, r ∈ ∆(R) ta có r + U (R) ⊆ U (R), nghĩa r + + J(R) ⊆ + J(R) Suy r ∈ J(R) ∆(R) = J(R) (5) Giả sử R có hạng ổn định Lấy r ∈ ∆(R), ta r ∈ J(R) Với s ∈ R ta có Rr +R(1−rs) = R Vì R có hạng ổn định nên tồn x ∈ R cho r + x(1 − sr) ∈ U (R), suy x(1 − sr) ∈ r + U (R) ⊆ U (R), (1 − sr) khả nghịch hay r ∈ J(R) − 2e ∈ U (R) e = (6) Giả sử R = F G nhóm đại số trường F Khi đó, phần tử R tổng phần tử khả nghịch Theo Hệ 11 ta suy ∆(R) = J(R) Ta biết vành nửa địa phương có hạng ổn định 1, điều kiện (2) (5) tương đương Bổ đề Giả sử G nhóm nhóm R phép tốn cộng Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Lấy r ∈ R G nhóm cộng, rG ⊆ G (1 − r)G ⊆ G Định lý Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R); (2) G Jacobson lớn đóng với phép nhân phần tử tựa khả nghịch R; (3) G nhóm lớn R phép cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Theo Định lý 45 (2) Bổ đề ∆(R) Jacobson R đóng với phép nhân phần tử tựa khả nghịch Giả sử G nhóm cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Cụ thể, G Jacobson không chứa đơn vị R, theo Bổ đề 9, G đóng với phép nhân phần tử khả nghịch R Do theo Định lý 45 (2) ta G ⊆ ∆(R) Các cận cho độ giao hoán tương đối nhóm Mệnh đề sau cho ta cận cận cho độ giao hoán tương đối nhóm nhóm n  kl kl |CDn (r )| = CDn r + |CDn (r )| = |Dn |+ − |R1 | k n n Pr(Rk , Dn ) = 1⩽l⩽ k −1 1⩽l⩽ k −1 n l̸= 2k Từ suy X |CDn (x)| = |Dn | + |Dn | + x∈Rk = 2n + 2n + n k n k  − |R1 |  −2 n= n(n + 2k) k 20 Áp dụng Mệnh đề ?? ta có Pr(Rk , Dn ) = X 1 n(n + 2k) n + 2k |CDn (x)| = n = |Rk ||Dn | k 2n 2n x∈Rk k Vậy ta có điều phải chứng minh (ii) Giả sử H = Tl với ⩽ l ⩽ n − Theo Mệnh đề ??, |Tl | = Tl = ⟨rl s⟩ = {1, rl s} Theo Mệnh đề ??, ta có Pr(Tl , Dn ) = X 1 (|CDn (1)| + |CDn (rl s)|) |CDn (x)| = |Tl ||Dn | · 2n x∈Tl = (|Dn | + |CDn (rl s)|) 4n Ta áp dụng Mệnh đề ?? cho hai trường hợp n sau Nếu n lẻ |CDn (rl s)| = |Tl | = Từ suy n+1 (2n + 2) = 4n Pr(Tl , Dn ) = Nếu n chẵn, giả sử m = n |CDn (rl s)| = |Um,l | = 2n 2n = = (n, m) m Từ suy Pr(Tl , Dn ) = n+2 (2n + 4) = 4n 2n Vậy ta có điều phải chứng minh (iii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Theo Mệnh đề ?? ta có |Ui,j | = Do Ui,j = ⟨ri , rj s⟩ =  2n 2n = (n, i) i  n ril , ril+j s ⩽ l ⩽ − i 21 Khi X X |CDn (x)| = |CDn (1)| + x∈Ui,j 1⩽l⩽ X |CDn (ril )| + n −1 i 0⩽l⩽ Ta xét hai trường hợp n Trường hợp 1: n lẻ Khi đó, theo Mệnh đề ?? ta có  n n X il |CDn (r )| = n 1⩽l⩽ −1 i X 0⩽l⩽ Từ suy X − |R1 | = n |CDn (ril+j s)| = n −1 i |CDn (x)| = 2n + n x∈Ui,j Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = i |Ui,j ||Dn | n i i |CDn (ril+j s)| n −1 i  −1 , n 2n |Til+j | = i i  −1 + |CDn (x)| = x∈Ui,j 2n n(n + i + 2) = i i n+i+2 n(n + i + 2) = 2n i 4n 2n i Trường hợp 2: n chẵn Ta xét hai trường hợp i n Trường hợp 2a: i ∤ Khi đó, theo Mệnh đề ?? ta có n  n  X |CDn (ril )| = 1⩽l⩽ ni −1 X i |CDn (ril+j s)| = 0⩽l⩽ ni −1 Từ suy X x∈Ui,j − |R1 | = n |CDn (x)| = 2n + n n i i −1 , 4n n U n2 ,il+j = i i  −1 + 4n n(n + i + 4) = i i 22 Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = |Ui,j ||Dn | |CDn (x)| = x∈Ui,j n(n + i + 4) n+i+4 = 2n i 4n 2n i

Ngày đăng: 05/07/2023, 14:41