Nghiệm tuần hoàn của phương trình vi phân hàm bậc cao và phương trình vi phân hàm trung hòa

111 2 0
Nghiệm tuần hoàn của phương trình vi phân hàm bậc cao và phương trình vi phân hàm trung hòa

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: NGHIỆM TUẦN HỒN CỦA PHƯƠNG TRÌNH VI PHÂN HÀM BẬC CAO VÀ PHƯƠNG TRÌNH VI PHÂN HÀM TRUNG HỊA LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Sự Không Tồn Tại Nghiệm Dương Của Một Số Phương Trình Laplace Liên Kết Với Điều Kiện Biên Neumann Phi Tuyến Trong Nửa Không Gian Trên Qua luận văn này, tác giả thực bắt đầu làm quen với công việc đọc tài liệu khoa học cách hệ thống Tác giả học tập phương pháp chứng minh vấn đề nhiều góc độ khác Tuy nhiên, với hiểu biết hạn chế tác thời gian ngắn khóa học, tác giả mong nhận đóng góp bảo q thầy, Cơ ngồi Hội đồng 329 2 So sánh không gian vector hữu hạn chiều không gian vector vô hạn chiều Chúng ta nhắc lại sơ qua điểm khác không gian vector hữu hạn chiều khơng gian vector vơ hạn chiều từ cách nhìn đại số topo Định nghĩa (i) Cho E F hai khơng gian vector Ta nói E F đẳng cấu tuyến tính tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu topo tồn ánh xạ liên tục T : E → F ánh xạ tuyến tính − với ánh xạ ngược liên tục T −1 : F → E (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu metric tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F với ∥T (x)∥F = ∥x∥E với x ∈ E Ta nhớ lại khái niệm không gian đối ngẫu không gian vector định chuẩn Định nghĩa Cho (E, ∥.∥) không gian vector định chuẩn Không gian đối ngẫu E ′ E khơng gian tuyến tính định nghĩa bởi: E ′ := {f : E → R : f tuyến tính liên tục} E ′ trang bị chuẩn ∥f ∥E ′ := |f (x)| < +∞ x∈E\{0} ∥x∥ sup Định lý (E ′ , ∥.∥E ′ ) không gian Banach Chứng minh Ta chứng minh dãy Cauchy E ′ hội tụ Giả sử {fn } dãy Cauchy E ′ , tức ∥fm − fn ∥E ′ → m, n → ∞, với x ∈ E ta có |fm (x) − fn (x)| = |(fm − fn )(x)| tính tuyến tính, hay |fm (x) − fn (x)| ≤ ∥fm − fn ∥E ′ ∥x∥E → m, n → ∞, {fn } dãy Cauchy E ′ Ta suy fn (x) dãy Cauchy R, fn (x) hội tụ, nghĩa tồn f (x) cho f (x) = lim fn (x) n→∞ Ta cần chứng minh f (x) tuyến tính liên tục Tính tuyến tính hiển nhiên, ta cần chứng minh tính liên tục, hay ta chứng minh f (x) bị chặn |f (x)| = lim |fn (x)| ≤ lim ∥fn ∥E ′ ∥x∥E , n→∞ n→∞ Vì fn ∈ E ′ nên fn tuyến tinh bị chặn, tức tồn M > cho ∥fn ∥ ≤ M , từ ta suy |f (x)| ≤ lim M ∥x∥E = M ∥x∥E n→∞ Ta có điều phải chứng minh Lưu ý: Nếu f ∈ E ′ x ∈ E ta viết ⟨f, x⟩E ′ ×E thay cho f (x) ta gọi ⟨., ⟩E ′ ×E tích vơ hướng không gian đối ngẫu E, E ′ Ký hiệu chung không gian đối ngẫu thực E khơng gian Hilbert Nhóm giả nhị diện Mệnh đề Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i − Pr(H, SD2n ) =  1   + n i = 2n−1 ,   + i + i ̸= 2n−1 n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề ?? ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề ?? ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 )| + X |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸=  = |SD2n | + |SD2n | + = 2n+1 + 2n+1 +  2n k n−1 k  − |R1 | 2n 2n+1 (2n−1 + k) − 2n = k k  Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = k 2n+1 (2n−1 + k) 2n−1 + k k · = = + n n n+1 n ·2 k 2 (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề ??, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề 11 ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)|   1 1 |SD2n | + |U2n−1 ,l | = (2n+1 + 4) = + n n+1 n+1 2·2 2·2 2 Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề ?? ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề 11 ta có X |CSD2n (x)| |Tl ||SD2n | Pr(Tl , SD2n ) = x∈Tl l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1  n | + |U n−1 | + |SD2n | + |U n−1 n−1 |SD | = 2 ,l ,l+2 · 2n+1  1 n+1 n+1 + = + + + = · 2n+1 2n =   Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề ??, ta có 2n+1 2n+1 = n−1 = i |Ui,j | = Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề 11 ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1  n n n−1 n−1 n−1 |SD | + |SD | + |U | + |U | = 2 ,j ,2 +j · 2n+1 1 = (2n+1 + 2n+1 + + 4) = + n n+1 4·2 2  =  Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề ?? ta có |Ui,j | = Do 2n+1 i  2n li li+j f (x − y)ϱ(y)dy (15) ∥f ∗ ϱ∥Lp (Rn ) = |(f ∗ ϱ)(x)| dx = n n n R R R Nhớ lại Bài tập Cho h : Rn → Z R ϱ : Ω → [0, +∞) hàm đo Lebesgue giả sử ϱdx = Chứng minh với p ∈ Rn [1, +∞) Z p |h|ϱdx Rn Z ≤ Rn |h|p ϱdx 51 Theo (??), tập ?? định lý Fubini-Tonelli, suy Z  Z ∥f ∗ ϱ∥pLp (Rn ) ≤ |f (x − y)|p ϱ(y)dy dx ZR n = Rn Z p |f (x − y)| dx ϱ(y)dy Rn  Rn Z =  Z p |f (x)| dx ϱ(y)dy Rn Rn = ∥f ∥pLp (Rn ) Bây cho p = ∞ Theo định nghĩa tích chập Z Z ϱ(x − y)f (y)dy ≤ ∥f ∥L∞ (Rn ) |(f ∗ ϱ)(x)| = |(ϱ ∗ f )(x)| = n = ∥f ∥L∞ (Rn ) , ϱ(x − y)dy Rn R ∀x ∈ Rn Do đó, ta có điều phải chứng minh (iii) Đặt ϱh ≡ ϱ cố định x ∈ R Khi đó, từ  ϱ(x − y)f (y) = hầu khắp nơi, y ∈ / x − B(0, 1/h) ∩ spte (f ), Z Z ϱ(x − y)f (y)dy = (ϱ ∗ f )(x) := Rn ϱ(x − y)f (y)dy (x−B(0,1/h))∩spte (f ) Chú ý  x − B(0, 1/h) ∩ spte (f ) ̸= ⇔ x ∈ B(0, 1/h) + spte (f ), (ϱ ∗ f )(x) = với x ∈ / B(0, 1/h) + spte (f ), từ ϱ ∗ f liên tục, spt(ϱ ∗ f ) ⊂ B(0, 1/h) + spte (f ) (iv) Từ (i) (ii), ϱh ∗ f ∈ C∞ (Rn ) ∩ Lp (Rn ) với p ∈ [1, ∞] Ta lim ∥ϱh ∗ f − f ∥Lp (Rn ) = ≤ p < ∞ (16) h→∞ C0c (Rn ) Từ trù mật (Lp (Rn ), ∥.∥Lp ), với ≤ p < ∞, với ϵ > tồn f1 ∈ C0c (Rn ) cho ∥f − f1 ∥Lp ()Rn 0, h→∞ ta (??) 13 ĐỊNH LÝ ROLLE Cơ sở định lý Rolle dựa hai định lý Weierstrass Fermat Định lý Weierstrass khẳng định hàm số f liên tục đoạn [a, b] bị chặn tồn giá trị lớn nhất, giá trị nhỏ đoạn Định lý Fermat điểm cực trị hàm khẳng định hàm f khả vi khoảng (a, b) đạt cực trị địa phương (cực đại địa phương cực tiểu địa phương) thuộc khoảng giá trị đạo hàm điểm cực trị địa phương không 53 Định lý 23 (Định lý Rolle) Giả sử cho hàm số f liên tục [a, b], khả vi khoảng (a, b) f (a) = f (b) Khi tồn c ∈ (a, b) cho f ′ (c) = Chứng minh Vì f liên tục đoạn [a, b] Theo định lý Weierstrass hàm f phải tồn giá trị lớn giá trị nhỏ đoạn [a, b], nghĩa tồn x1 , x2 ∈ (a, b) cho f (x1 ) = f (x) = m, f (x2 ) = max f (x) = M [a,b] [a,b] Có hai khả xảy ra: 1) Nếu m = M Khi f (x) = const đoạn [a, b] Nên f ′ (c) = với c ∈ (a, b) 2) Nếu m < M Theo giả thiết ta có f (a) = f (b) nên hai điểm x1 , x2 phải thuộc khoảng (a, b) Khơng tính tổng quát ta giả sử x1 ∈ (a, b) Theo định lý Fermat đạo hàm điểm khơng Định lý chứng minh xong Ý nghĩa hình học định lý Rolle Cho C đường cong trơn với hai đầu mút A, B có "độ cao" (trong hệ trục tọa độ Descartes) C tồn điểm mà tiếp tuyến C điểm song song với AB(hay song song với trục hồnh f (a) = f (b)) Hệ 26 Nếu hàm số f (x) có đạo hàm khoảng (a, b) phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) phương trình f ′ (x) = có n − nghiệm phân biệt thuộc khoảng (a, b) (Phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) với (k = 1, 2, , n)) Chứng minh Giả sử phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) thứ tự x1 < x2 < < xn Khi ta áp dụng định lý Rolle cho n − đoạn [x1 , x2 ], [x2 , x3 ], , [xn−1 , xn ] phương trình f ′ (x) = có

Ngày đăng: 05/07/2023, 16:58

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan