Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc cao

117 0 0
Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc cao

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TỐN BIÊN TUẦN HỒN CHO PHƯƠNG TRÌNH VI PHÂN HÀM BẬC CAO LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Lý thuyết wavelet áp dụng nhiều lĩnh vực xử lý thông tin, khai triển wavelet xem cơng cụ hiệu để xây dựng thuật tốn nén luồng liệu lớn Luồng liệu dãy tín hiệu số rời rạc, xử lý dãy tín hiệu này, ta hay xem chúng giá trị hàm thực xử lý chúng thơng qua hàm số Việc xấp xỉ n điểm đường cong B-splines (basic splines) biết đến từ lâu (khoảng kỷ thứ 19, nhà Toán học Nikolai Lobachevski nghĩ ra) Phương trình đường cong tổ hợp tuyến tính đa thức có bậc khơng vượt n 555 Không gian hàm khả vi liên tục C1 (Ω) Định nghĩa Cho Ω ⊂ Rn tập mở (i) Cho f : Ω → R i = 1, , n, ta nói f liên tục khả vi cấp ∂f = Di f ∈ C0 (Ω)) có tồn g ∈ C0 (Ω) thỏa mãn ∂xi ∂f ∂f = Di f Ω, = Di f hiểu lớp đạo hàm g= ∂xi ∂xi riêng thứ i f i Ω (∃ (i)  C (Ω) :=  ∂f ∈ C0 (Ω), ∀i = 1, , n f ∈ C (Ω) : ∃ ∂xi (iii) Cho f C1 (Ω) Ta biểu thị ∥f ∥C1 = ∥f ∥C1 ,Ω = X ∥Dα f ∥∞,Ω |α|≤1 ∥.∥C1 gọi chuẩn C1 Định lý Cho Ω ⊂ Rn tập mở, bị chặn Khi (C1 (Ω), ∥.∥C1 ) khơng gian Banach vô hạn chiều, không không gian Hilbert Chứng minh Ta xét trường hợp n = Ω = (a, b) Đầu tiên ta phải đầy đủ không không gian Hilbert Xét ánh xạ tuyến tính T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), T (f ) := (f, f ′ ) (1) ∥f, g∥C0 (Ω)×C0 (Ω) := ∥f ∥∞ + ∥g∥∞ (f, g) ∈ C0 (Ω) × C0 (Ω) Chú ý T đẳng cự, nghĩa ∥T (f )∥C0 (Ω)×C0 (Ω) = ∥f ∥C1 ∀f ∈ C1 (Ω) Đặc biệt, ta định nghĩa M := T (C1 (Ω)), ánh xạ T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) đẳng cự Bài tập Cho (E, ∥.∥E ) (F, ∥.∥F ) khơng gian Banach Cho E × F với chuẩn ∥(x, y)∥F = ∥x∥E + ∥y∥F Khi (E × F, ∥(x, y)∥E×F ) không gian Banach Do đó, ta phải M đóng (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), để hồn thành chứng minh Giả sử ((fh , fh′ ))h ⊂ M dãy mà lim ∥(fh − f, fh′ − g)∥C0 (Ω)×C0 (Ω) = h→∞ (2) với (f, g) ∈ C0 (Ω) × C0 (Ω chứng minh ∃f ′ = g [a, b] (3) Theo (??), ta fh → f fh′ → g [a, b] hội tụ theo điểm Theo định lý tích phân cổ điển Z x fh′ (t)dt fh (x) − fh (a) = ∀x ∈ [a, b], ∀h, a ta lấy qua giới hạn, h → ∞, đồng thức trước theo (??) Bài tập Chỉ (C1 (Ω), ∥.∥C1 ) không gian Banach, X ∥Dα u∥∞ ∥u∥C1 := |α|≤1 Ω ⊂ Rn tập mở bị chặn C1 (Ω) không gian vector vơ hạn chiều chứa tập hợp đa thức C1 (Ω) không không gian Hilbert Tính compact (C1 (Ω), ∥.∥C1 ) Định lý Cho F ⊂ C1 (Ω) Fi := {Di f : f ∈ F}, i = 1, , n Khi F compact (C1 (Ω), ∥.∥C1 ) F Fi , với i = 1, , , n (i) Bị chặn (C0 (Ω), ∥.∥C0 ); (ii) đóng (C0 (Ω), ∥.∥C0 ); (iii) liên tục Ω Chứng minh Ta xét trường hợp n = Ω = (a, b) Sự cần thiết: Chỉ rằng, F compact (C1 (Ω), ∥.∥C1 ), (i), (ii) (iii) Cho T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (??) Trong chứng minh định lý ?? ta tồn T −1 : (M, ∥.∥C0 (Ω)×C0 (Ω) ) → (C1 (Ω), ∥.∥C1 ) liên tục Do F compact (C1 (Ω), ∥.∥C1 ) tương đương với T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Giờ ta quan sát, xác biểu thị πi : C0 (Ω) × C0 (Ω) → C0 (Ω), (i = 1, 2) phép chiếu không gian tọa độ, nghĩa πi (f1 , f2 ) = fi (f1 , f2 ) ∈ C0 (Ω) × C0 (Ω), πi liên tục Từ F compact (C1 (Ω), ∥.∥C1 ), T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Điều có nghĩa π1 (T (F)) = F π2 (T (F)) = F ′ compact (C0 (Ω), ∥.∥C0 ) Theo định lý Arzelà - Ascoli ta (i), (ii), (iii) Tính đầy đủ: Chứng minh Bài tập F compact (C1 (Ω), ∥.∥C1 ), cho trước (i), (ii) (iii) Nhận xét Cho F = BC1 ([a,b]) := {f ∈ C1 ([a, b]) : ∥f ∥C1 = ∥f ∥∞ + ∥f ′ ∥∞ ≤ 1} Khi F khơng compact (C1 ([a, b]), ∥.∥C1 ) theo định lý Riesz’s (nhớ C1 ([a, b]) không gian vô hạn chiều) Nhưng F compact tương đối (C0 ([a, b]), ∥.∥∞ ), nghĩa là, ∀(fh )h ⊂ F tồn (fhk )k f ∈ C0 ([a, b]) thỏa mãn lim ∥fhk − f ∥∞ = k→∞ Tính tách (C1 (Ω), ∥.∥C1 ) Định lý (C1 (Ω), ∥.∥C1 ) tách Chứng minh Cho T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (??) Vì T đồng phơi tính tách được bảo tồn qua phép đồng phơi, ta cần khơng gian (M, ∥.∥C0 (Ω)×C0 (Ω) ) khơng gian metric (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) tách Điều tính tách (C0 (Ω), ∥.∥∞ ) (Định lý 21), tập ?? từ tính chất tách qua giới hạn đến không gian (Xem định lý 20 (ii)) Một số kiến thức nhóm Một nhóm (G, ·) tập hợp G ̸= ∅ trang bị phép tốn hai · thỏa mãn điều kiện sau đây: (i) a · (b · c) = (a · b) · c với a, b, c ∈ G, (ii) Tồn phần tử e ∈ G cho a · e = a = e · a với a ∈ G, (iii) Với a ∈ G tồn phần tử a′ ∈ G cho a · a′ = a′ · a = e Để đơn giản, ta ký hiệu ab thay cho a · b Phần tử e xác định (ii) nhất, gọi phần tử đơn vị nhóm G, thường ký hiệu Với a ∈ G, phần tử a′ xác định (iii) nhất, gọi phần tử nghịch đảo a, ký hiệu a−1 Một nhóm G gọi giao hoán (hay abel ) ab = ba với a, b ∈ G Nếu nhóm G có hữu hạn phần tử ta gọi G nhóm hữu hạn, gọi số phần tử G cấp nhóm G, ký hiệu |G| Cho G nhóm, H tập G Ta gọi H nhóm G, ký hiệu H ⩽ G, điều kiện sau thỏa mãn: (i) Phép toán G hạn chế lên H cảm sinh phép tốn H , (ii) H nhóm với phép tốn cảm sinh Cho G nhóm, H tập G ta ký hiệu ⟨S⟩ nhóm bé G chứa S , gọi S tập sinh ⟨S⟩ Đặc biệt, nhóm có tập sinh gồm phần tử gọi nhóm xiclíc Mệnh đề (Định lý Lagrange) Cho G nhóm hữu hạn, H nhóm G Khi |H| ước |G| Với G nhóm hữu hạn, H ⩽ G, ta ký hiệu |G : H| = |G| : |H|, gọi số nhóm H G Mệnh đề Cho G nhóm, A, B hai nhóm hữu hạn G Ký hiệu AB = {ab | a ∈ A, b ∈ B} Khi |AB| = |A||B| |A ∩ B| Cho G nhóm, a phần tử G Với u phần tử G, liên hợp u a, ký hiệu ua , định nghĩa ua = a−1 ua Với H nhóm G, ta gọi H nhóm chuẩn tắc G, ký hiệu H ◁ G, ∈ H với a ∈ G, h ∈ H Cho N nhóm chuẩn tắc G Ký hiệu G/N = {aN | a ∈ G} Khi G/N nhóm với phép tốn xác định sau Với a, b ∈ G (aN )(bN ) = abN Nhóm G/N gọi nhóm thương G N Với S tập G, tâm hóa S G, ký hiệu CG (S), định nghĩa CG (S) = {a ∈ G | ua = u với u ∈ S} Trong trường hợp S = {x}, ta dùng ký hiệu CG (x) thay cho CG (S) Tâm nhóm G, ký hiệu Z(G), định nghĩa Z(G) = CG (G) Mệnh đề Cho G nhóm khơng giao hốn Khi đó, nhóm thương G/Z(G) khơng nhóm xiclíc Cho G nhóm Với x y hai phần tử G, giao hoán tử x y , ký hiệu [x, y], định nghĩa [x, y] = x−1 y −1 xy Nhóm giao hốn tử G, ký hiệu G′ , định nghĩa nhóm sinh tập tất giao hoán tử {[x, y] | x, y ∈ G} Cho hai nhóm G H Một ánh xạ f : G → H gọi đồng cấu nhóm với a, b ∈ G f (ab) = f (a)f (b) Nếu đồng cấu f đơn ánh (tương ứng, tốn ánh, song ánh) ta gọi f đơn cấu (tương ứng, toàn cấu, đẳng cấu) Ta ký hiệu Aut(G) nhóm tất tự đẳng cấu G Cho N H hai nhóm bất kỳ, cho θ : H → Aut(N ) đồng cấu nhóm Khi đó, tập hợp G = {(x, h) | x ∈ N, h ∈ H} nhóm với phép tốn xác định sau Với (x1 , h1 ), (x2 , h2 ) ∈ G, (x1 , h1 )(x2 , h2 ) = (x1 θ(h1 )(x2 ), h1 h2 ) Nhóm G xác định gọi tích nửa trực tiếp N H ứng với tác động θ, ký hiệu G = N ×θ H Trong trường hợp đặc biệt θ đồng cấu tầm thường tích nửa trực tiếp tích trực tiếp Sau số kiến thức p-nhóm nhóm abel hữu hạn Cho p số nguyên tố Một nhóm G gọi p-nhóm |G| mơt lũy thừa p Ta thấy nhóm con, nhóm thương p-nhóm p-nhóm Mệnh đề Cho p số nguyên tố Khi (i) Mọi nhóm có cấp p nhóm xiclíc (ii) Mọi nhóm có cấp p2 nhóm abel Mệnh đề Mọi nhóm abel hữu hạn G biểu diễn cách thành tích trực tiếp nhóm xiclíc G∼ = Cn1 × Cn2 × · · · × Cnk ni ⩾ 2, i = 1, 2, k , n1 | n2 | · · · | nk Sau số kiến thức nhóm đối xứng nhóm thay phiên Cho X tập hợp Một song ánh từ tập X đến gọi phép tập X Ký hiệu S(X) tập tất phép tập X Khi S(X) nhóm với phép tốn hợp thành ánh xạ Ta gọi S(X) nhóm đối xứng tập X Ta dùng ký hiệu Sn để nhóm đối xứng tập X = {1, 2, , n} gọi Sn nhóm đối xứng bậc n Định lý Mọi phép π ∈ Sn với n ⩾ phân tích thành tích xích rời Phân tích không kể đến thứ tự nhân tử Cho π ∈ Sn với n ⩾ Khi đó, theo Định lý ??, ta có phân tích π thành tích xích rời π = (a11 a12 · · · a1k1 )(a21 a22 · · · a2k2 ) · · · (as1 as2 · · · asks ) ta giả thiết k1 ⩾ k2 ⩾ · · · ⩾ ks Ta gọi (k1 , k2 , , ks ) kiểu phép π Mệnh đề Hai phép nhóm đối xứng Sn với n ⩾ liên hợp với chúng có kiểu Cho σ ∈ Sn với n ⩾ Ta nói cặp (σ(i), σ(j)) nghịch σ i < j σ(i) > σ(j) Dấu phép σ, ký hiệu sign(σ), xác định cơng thức sign(σ) = (−1)t t số nghịch σ Nếu sign(σ) = ta gọi σ phép chẵn, sign(σ) = −1 ta gọi σ phép lẻ ϕ = ϕ χ E − h=m+1 h=1 ∞ X χEh ≤ ∥ϕ∥(Lp (Ω))′ h=m+1 | ∪∞ h=m+1 Eh | = ∞ X Lp (Ω) |Eh | → m → ∞ từ E < ∞ Vì h=m+1 ν(E) = ∞ X ν(Eh ) h=1 kết cho cách xếp dãy (Eh )h , chuỗi hội tụ tuyệt đối thỏa (6) Hơn nữa, từ |ν(E) ≤ ∥ϕ∥(Lp (Ω))′ |E|1/p , ∀E ∈ M, suy (7) Lưu ý: Nếu p = ∞ đánh giá trước, (7) khơng cịn giữ Theo định lý Radon-Nikodym cho độ đo dấu, tồn M-hàm đo u : Ω → R với u+ u− ∈ L1 (Ω) cho Z ϕ(χE ) = ν(E) = udx, ∀E ∈ M (39) E Thực thỏa mãn u ∈ L1 (Ω) Thật vậy, cho En+ := {x ∈ Ω : u(x) ≥ 0} En− := {x ∈ Ω : u(x) ≤ 0} Từ (8) ta Z 0≤ ± Z u dx = Ω En± 1/p = ∥ϕ∥(Lp (Ω))′ ∪∞ h=m+1 Eh udx = ν(En± ) < ∞ 49 Do u± ∈ L1 (Ω) Từ tuyến tính ϕ tích phân, rõ ràng Z ϕ(s) = (40) u s dx Ω với hàm đơn giản đo s : Ω → R Để kết luận, cần chứng minh ′ u ∈ Lp (Ω), ∀p ∈ [1, ∞) (41) Thật vậy, với f ∈ Lp (Ω), theo xấp xỉ hàm đơn giản (Định lý ??), tồn dãy sh : Ω → R, (h = 1, 2, ) hàm đơn gian đo thỏa mãn sh → f Lp (Ω) (42) Từ (10), (11) bất đẳng thức Holder, suy Z

Ngày đăng: 04/07/2023, 15:53

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan