Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 86 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
86
Dung lượng
475,1 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TỐN BIÊN TUẦN HỒN CHO PHƯƠNG TRÌNH VI PHÂN HÀM BẬC CAO LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Mơ hình tốn học phương thức sử dụng ngơn ngữ tốn để mô tả hệ thống, tượng tự nhiên sống, đặc biệt sử dụng nhiều ngành khoa học tự nhiên chuyên ngành kỹ thuật (ví dụ: vật lý, sinh học, kỹ thuật điện tử) đồng thời khoa học xã hội (như kinh tế, xã hội học khoa học trị) Các kỹ sư, nhà khoa học sử dụng mơ hình tốn học cơng cụ nghiên cứu Các mơ hình đưa mơ tả vấn đề sống mà chúng biểu thị dạng phương trình tốn học, phương trình sai phân, hệ phương trình tuyến tính phải kể đến vấn đề miêu tả phương trình vi phân hệ phương trình vi phân 916 2 Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề ta có kết sau Mệnh đề Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề 46, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề 58 Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 2c(7) = 7! 315 Biểu diễn ∆(R) tính chất Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) iđêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) ru−1 + ∈ U (R) u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆(R) nhóm với phép cộng R Hơn rs = r(s + 1) − r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) suy ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược Y Y lại hiển nhiên Y Y Y (5) Lấy ri ∈ ∆( Ri ) Khi ri + U ( Ri ) ⊆ U ( Ri ) Vì Y U( i∈IY Ri ) = i∈I U (Ri )) ⊆ i∈I U (Ri ) nên i∈I Y Y ri + i∈I Yi∈I i∈I Y i∈I i∈I U (Ri ) ⊆ U (Ri ) hay U (Ri ), suy ri +U (Ri ) ⊆ U (Ri ), ∀i ∈ I nên i∈I i∈IY Y i∈I ri ∈ (ri + Yi∈I ∆(Ri ) i∈I Chiều ngược lại tương tự Cho e phần tử lũy đẳng vành R Khi phần tử − 2e khả nghịch R Từ Bổ đề 10 (2) ta suy hệ sau Hệ Cho R vành (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý Cho R vành có đơn vị T vành R sinh U (R) Khi (1) ∆(R) = J(T ) ∆(S) = ∆(R), với S vành tùy ý R thỏa mãn T ⊆ S ; (2) ∆(R) Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên phần tử T viết thành tổng hữu hạn phần tử khả nghịch R Do đó, theo Bổ đề 10 (2) suy ∆(T ) iđêan T Theo Bổ đề 10 (4) suy ∆(T ) = J(T ) Hơn ∆(T ) = ∆(R) nên ∆(R) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai phần tử khả nghịch Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆(R) Jacobson R theo Bổ đề 10 (2) ∆(R) đóng với phép nhân phần tử khả nghịch trái phải R Bây giờ, ta giả sử S Jacobson chứa R đóng với phép nhân phần tử khả nghịch Ta phải S ⊆ ∆(R) Thật vậy, s ∈ S u ∈ U (R), su ∈ S = J(S) Do su tựa khả nghịch S nên + su ∈ U (R) Theo Bổ đề 10 (1) s ∈ ∆(R) hay S ⊆ ∆(R) Từ đặt trưng ∆(R) Định lý 38 (2) ta có hệ sau Hệ Giả sử R vành mà phần tử biểu diễn thành tổng phần tử khả nghịch Khi ∆(R) = J(R) Định lý cổ điển Amitsur nói Jacobson F -đại số R trường F lũy linh, với điều kiện dimF R < |F | Áp dụng Định lý 38 (1) ta thu hệ sau Hệ Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Cho R vành không thiết phải có đơn vị S vành R, ta ký hiệu Sˆ vành R sinh S ∪ {1} Mệnh đề Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa mãn U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S); [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa mãn I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề 10 ∆(R) [ ∩ U (R), r ∈ ∆(R) k ∈ Z Ta Lấy u = r + k · ∈ ∆(R) ¯ −1 = (u − k)u ¯ −1 = k¯ = k · ∈ U (R) Ta có u − k¯ = r ∈ ∆(R), − ku ¯ −1 = − (1 − ku ¯ −1 ) ∈ U (R), suy ru−1 ∈ ∆(R) theo Bổ đề 10 (2) Khi ku k¯ ∈ U (R) Vì ∆(R) đóng với phép nhân phần tử khả nghịch nên ta áp dụng phần chứng minh v = uk¯−1 = + rk¯−1 [ , nghĩa u−1 k¯ = s + ¯l, với s ∈ ∆(R) l ∈ Z Suy u−1 k¯ = v −1 ∈ ∆(R) [ , U (R) ∩ ∆(R) [ ⊆ U (∆(R)) [ sk¯−1 ∈ ∆(R), u−1 = sk¯−1 + k¯−1 ¯l ∈ ∆(R) [ ⊆ U (R) ∩ ∆(R) [ dễ thấy Chiều ngược lại U (∆(R)) ¯ = (3) Ta ký hiệu ¯ phép chiếu từ R lên R/I Lưu ý, I ⊆ J(R), U (R) U (R) ¯ u ∈ U (R) Khi r¯ + u¯ ∈ U (R) ¯ có phần tử Lấy r¯ ∈ ∆(R) v ∈ U (R) j ∈ I thỏa mãn r + u = v + j Hơn v + j ∈ U (R), ¯ = U (R) nên chiều ngược lại ¯ = ∆(R) Vì U (R) I ⊆ J(R) Suy ∆(R) dễ thấy Áp dụng mệnh đề ta có hệ sau [ = ∆(R), nghĩa ∆ Hệ Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng [ , ∆(R) ⊆ T Chứng minh ∆(R) Jacobson T = ∆(R) Vì ∆(R) chứa tất phần tử lũy linh nên T /∆(R) đẳng cấu với Z Zn := Z/nZ, với n > nhân tử bình phương Theo Mệnh đề 33 (3) Hệ 21 ta có ∆(T )/∆(R) = ∆(T /∆(R)) = J(T /∆(R)) = hay ∆(T ) = ∆(R) Từ Mệnh đề 33 (1), áp dụng cho S = Z(R) tâm R, ta có hệ sau Hệ ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Ký hiệu ( R[[x]] = {a0 + a1 x + a2 x2 + · · · |ai ∈ R} = ∞ X ) xi |ai ∈ R i=0 Mỗi phần tử f ∈ R[[x]], f = ∞ X xi với x0 = gọi chuỗi lũy i=0 thừa hình thức biến x với hệ tử thuộc R Ta định nghĩa phép cộng ∞ ∞ X X i phép nhân, lấy f, g ∈ R[[x]], f = x , g = bi xi Ta định i=0 i=0 nghĩa f = g = bi với i = 0, 1, ! ∞ ∞ i X X X (ai + bi )xi , f g = f +g = i=0 ai−j bj i=0 xi j=0 Với phép tốn R[[x]] vành giao hốn có đơn vị Cho vành R, ký hiệu Tn (R) tập tất ma trận tam giác cấp n vành R, Jn (R) iđêan Tn (R) bao gồm tất ma trận tam giác cấp n thực Dn (R) vành ma trận đường chéo cấp n Từ Mệnh đề 33 (3) ta suy trực tiếp hệ sau Hệ Cho R vành tùy ý Khi đó, khẳng định sau (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ Cho R vành Khi đó, ∆(R) = J(R) ∆(R/J(R)) = Một vành R có hạng ổn định a, x, b ∈ R thỏa mãn ax + b = 1, tồn y ∈ R cho a + by khả nghịch R Định lý sau vài lớp vành mà ∆(R) = J(R) Định lý ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với tích vành ma trận thể (2) R vành nửa địa phương (3) R vành clean thỏa mãn ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có hạng ổn định (6) R = F G nhóm đại số trường F Chứng minh (1) Giả sử R đẳng cấu với tích vành ma trận thể Theo Hệ 26 ta cần ∆(R/J(R)) = Để làm điều này, ta giả sử J(R) = 0, nghĩa R tích vành ma trận thể Nếu R vành ma trận Mn (S), với S vành chứa đơn vị n ≥ Theo Định lý ??, phần tử R tổng ba phần tử khả nghịch, theo Hệ 21 ∆(R) = J(R) = Khi S thể rõ ràng ∆(S) = Do (1) suy trực tiếp từ Bổ đề 10 (5) (2) Là trường hợp đặc biệt (1) (3) Giả sử R vành clean thỏa mãn ∈U (R) Nếu e ∈ R lũy đẳng 1 − (1 − 2e) tổng hai phần tử khả 2 nghịch Điều có nghĩa phần tử R tổng ba phần tử khả nghịch Theo Hệ 21 ta suy ∆(R) = J(R) (4) Giả sử U (R) = 1+U (R) Giả sử R U J -vành Khi đó, r ∈ ∆(R) ta có r + U (R) ⊆ U (R), nghĩa r + + J(R) ⊆ + J(R) Suy r ∈ J(R) ∆(R) = J(R) (5) Giả sử R có hạng ổn định Lấy r ∈ ∆(R), ta r ∈ J(R) Với s ∈ R ta có Rr +R(1−rs) = R Vì R có hạng ổn định nên tồn − 2e ∈ U (R) e = ⩽ l ⩽ − k kl Khi X X |CDn (x)| = |CDn (1)| + |CDn (rkl )| 1⩽l⩽ nk −1 x∈Rk Ta xét hai trường hợp n sau Trường hợp 1: n lẻ Theo Mệnh đề ?? ta có X |CDn (rkl )| = 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + n k x∈Rk n k − |R1 | − |R1 | = 2n + n k −1 n= n(n + k) k Áp dụng Mệnh đề ta có Pr(Rk , Dn ) = X n+k n+k n = |CDn (x)| = n |Rk ||Dn | k 2n 2n x∈Rk k Trường hợp 2: n chẵn Ta xét hai trường hợp k n Trường hợp 2a: k ∤ Khi đó, theo Mệnh đề ?? ta có X |CDn (rkl )| = 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + x∈Rk n k n k − |R1 | − |R1 | = 2n + n k −1 n= n(n + k) k 68 Áp dụng Mệnh đề 1, ta có X n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k n Trường hợp 2b: k | Khi đó, theo Mệnh đề ?? ta có n X X n |CDn (rkl )| = |Dn |+ − |R1 | |CDn (rkl )| = CDn r + k n n Pr(Rk , Dn ) = 1⩽l⩽ k −1 1⩽l⩽ k −1 n l̸= 2k Từ suy X |CDn (x)| = |Dn | + |Dn | + x∈Rk = 2n + 2n + n k n k − |R1 | −2 n= n(n + 2k) k Áp dụng Mệnh đề ta có Pr(Rk , Dn ) = X 1 n(n + 2k) n + 2k |CDn (x)| = n = |Rk ||Dn | k 2n 2n x∈Rk k Vậy ta có điều phải chứng minh (ii) Giả sử H = Tl với ⩽ l ⩽ n − Theo Mệnh đề ??, |Tl | = Tl = ⟨rl s⟩ = {1, rl s} Theo Mệnh đề 1, ta có Pr(Tl , Dn ) = X 1 |CDn (x)| = (|CDn (1)| + |CDn (rl s)|) |Tl ||Dn | · 2n x∈Tl = (|Dn | + |CDn (rl s)|) 4n Ta áp dụng Mệnh đề ?? cho hai trường hợp n sau Nếu n lẻ |CDn (rl s)| = |Tl | = Từ suy Pr(Tl , Dn ) = n+1 (2n + 2) = 4n 69 Nếu n chẵn, giả sử m = n |CDn (rl s)| = |Um,l | = 2n 2n = = (n, m) m Từ suy n+2 (2n + 4) = 4n 2n Pr(Tl , Dn ) = Vậy ta có điều phải chứng minh (iii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Theo Mệnh đề ?? ta có |Ui,j | = Do i j Ui,j = ⟨r , r s⟩ = Khi X il r ,r il+j X |CDn (x)| = |CDn (1)| + x∈Ui,j 2n 2n = (n, i) i 1⩽l⩽ n s ⩽ l ⩽ − i X |CDn (ril )| + n −1 i 0⩽l⩽ Ta xét hai trường hợp n Trường hợp 1: n lẻ Khi đó, theo Mệnh đề ?? ta có n n X il |CDn (r )| = 1⩽l⩽ n −1 i X 0⩽l⩽ Từ suy X |CDn (ril+j s)| = n −1 i |CDn (x)| = 2n + n x∈Ui,j Áp dụng Mệnh đề ta có X Pr(Ui,j , Dn) = i − |R1 | = n |Ui,j ||Dn | x∈Ui,j n i n −1 i −1 , 2n n |Til+j | = i i −1 + |CDn (x)| = i |CDn (ril+j s)| 2n n(n + i + 2) = i i n(n + i + 2) n+i+2 = 2n i 4n 2n i 70 Trường hợp 2: n chẵn Ta xét hai trường hợp i n Trường hợp 2a: i ∤ Khi đó, theo Mệnh đề ?? ta có n n X |CDn (ril )| = i 1⩽l⩽ ni −1 X |CDn (ril+j s)| = 0⩽l⩽ ni −1 Từ suy X |CDn (x)| = 2n + n n x∈Ui,j Áp dụng Mệnh đề ta có X Pr(Ui,j , Dn) = − |R1 | = n |Ui,j ||Dn | i i −1 , 4n n