1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài toán không chính qui cho hệ phương trình vi phân hàm bậc cao

111 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TỐN KHƠNG CHÍNH QUI CHO HỆ PHƯƠNG TRÌNH VI PHÂN HÀM BẬC CAO LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Phép biến đổi cơng cụ tốn học quan trọng sử dụng xử lý vấn đề toán học nhiều úng dụng Sự xuất phép biến đổi Z vào năm 1730 De Moivre đưa khái niệm chức tạo sở liệu xác suất, sau Laplace mở rộng năm 1912 Tới năm 1947, Hurewicz giới thiệu phép biến đổi Z việc giải phương trình sai phân tuyến tính hệ số khơng đổi Tên gọi “phép biến đổi Z” đưa Ragazzini Zadeh nhóm kiểm sốt liệu mẫu Đại học Columbia năm 1952 Sau phép biến đổi Z phát triển phổ biến E.I.Jury 197 2 Không gian hữu hạn chiều Định nghĩa (i) Một không gian vector E trường số thực gọi hữu hạn chiều bao gồm hữu hạn vector độc lập tuyến tính (ii) Số lớn vector độc lập tuyến tính không gian vector hữu hạn chiều E gọi chiều ký hiệu dimR E Hệ B ⊂ E sinh dimR E vector độc lập tuyến tính gọi sở Định lý Giả sử E không gian vector hữu hạn chiều dimR E = n (i) Nếu B ⊂ E sở, B sinh E , cụ thể spanR B = E (ii) E Rn đẳng cấu tuyến tính (iii) Giả sử ∥.∥1 ∥.∥2 hai chuẩn E Khi (E, ∥.∥1 ) (E, ∥.∥2 ) đẳng cấu topo (iv) Giả sử ∥.∥ chuẩn E Khi (E, ∥.∥) (E ′ , ∥.∥E ′ ) đẳng cấu topo Theo tập trước, không gian định chuẩn hữu hạn chiều (E, ∥.∥) đẳng cấu topo với không gian Hilbert Rn Đây đặc trưng mạnh, khơng cịn cho khơng gian định chuẩn vô hạn chiều Không gian hàm khả vi liên tục C1 (Ω) Định nghĩa Cho Ω ⊂ Rn tập mở (i) Cho f : Ω → R i = 1, , n, ta nói f liên tục khả vi cấp ∂f = Di f ∈ C0 (Ω)) có tồn g ∈ C0 (Ω) thỏa mãn ∂xi ∂f ∂f g= = Di f Ω, = Di f hiểu lớp đạo hàm ∂xi ∂xi riêng thứ i f i Ω (∃ (i)  C (Ω) :=  ∂f f ∈ C (Ω) : ∃ ∈ C0 (Ω), ∀i = 1, , n ∂xi (iii) Cho f C1 (Ω) Ta biểu thị ∥f ∥C1 = ∥f ∥C1 ,Ω = X ∥Dα f ∥∞,Ω |α|≤1 ∥.∥C1 gọi chuẩn C1 Định lý Cho Ω ⊂ Rn tập mở, bị chặn Khi (C1 (Ω), ∥.∥C1 ) khơng gian Banach vơ hạn chiều, không không gian Hilbert Chứng minh Ta xét trường hợp n = Ω = (a, b) Đầu tiên ta phải đầy đủ không không gian Hilbert Xét ánh xạ tuyến tính T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), T (f ) := (f, f ′ ) (1) ∥f, g∥C0 (Ω)×C0 (Ω) := ∥f ∥∞ + ∥g∥∞ (f, g) ∈ C0 (Ω) × C0 (Ω) Chú ý T đẳng cự, nghĩa ∥T (f )∥C0 (Ω)×C0 (Ω) = ∥f ∥C1 ∀f ∈ C1 (Ω) Đặc biệt, ta định nghĩa M := T (C1 (Ω)), ánh xạ T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) đẳng cự Bài tập Cho (E, ∥.∥E ) (F, ∥.∥F ) khơng gian Banach Cho E × F với chuẩn ∥(x, y)∥F = ∥x∥E + ∥y∥F Khi (E × F, ∥(x, y)∥F ) khơng gian Banach Do đó, ta phải M đóng (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), để hồn thành chứng minh Giả sử ((fh , fh′ ))h ⊂ M dãy mà lim ∥(fh − f, fh′ − g)∥C0 (Ω)×C0 (Ω) = h→∞ (2) với (f, g) ∈ C0 (Ω) × C0 (Ω chứng minh ∃f ′ = g [a, b] (3) Theo (??), ta fh → f fh′ → g [a, b] hội tụ theo điểm Theo định lý tích phân cổ điển Z x fh′ (t)dt fh (x) − fh (a) = ∀x ∈ [a, b], ∀h, a ta lấy qua giới hạn, h → ∞, đồng thức trước theo (??) Bài tập Chỉ (C1 (Ω), ∥.∥C1 ) không gian Banach, X ∥Dα u∥∞ ∥u∥C1 := |α|≤1 Ω ⊂ Rn tập mở bị chặn C1 (Ω) không gian vector vơ hạn chiều chứa tập hợp đa thức C1 (Ω) không không gian Hilbert Tính compact (C1 (Ω), ∥.∥C1 ) Định lý Cho F ⊂ C1 (Ω) Fi := {Di f : f ∈ F}, i = 1, , n Khi F compact (C1 (Ω), ∥.∥C1 ) F Fi , với i = 1, , , n (i) Bị chặn (C0 (Ω), ∥.∥C0 ); (ii) đóng (C0 (Ω), ∥.∥C0 ); (iii) liên tục Ω Chứng minh Ta xét trường hợp n = Ω = (a, b) Sự cần thiết: Chỉ rằng, F compact (C1 (Ω), ∥.∥C1 ), (i), (ii) (iii) Cho T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (??) Trong chứng minh định lý ?? ta tồn T −1 : (M, ∥.∥C0 (Ω)×C0 (Ω) ) → (C1 (Ω), ∥.∥C1 ) liên tục Do F compact (C1 (Ω), ∥.∥C1 ) tương đương với T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Giờ ta quan sát, xác biểu thị πi : C0 (Ω) × C0 (Ω) → C0 (Ω), (i = 1, 2) phép chiếu không gian tọa độ, nghĩa πi (f1 , f2 ) = fi (f1 , f2 ) ∈ C0 (Ω) × C0 (Ω), πi liên tục Từ F compact (C1 (Ω), ∥.∥C1 ), T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Điều có nghĩa π1 (T (F)) = F π2 (T (F)) = F ′ compact (C0 (Ω), ∥.∥C0 ) Theo định lý Arzelà - Ascoli ta (i), (ii), (iii) Tính đầy đủ: Chứng minh Bài tập F compact (C1 (Ω), ∥.∥C1 ), cho trước (i), (ii) (iii) Nhận xét Cho F = BC1 ([a,b]) := {f ∈ C1 ([a, b]) : ∥f ∥C1 = ∥f ∥∞ + ∥f ′ ∥∞ ≤ 1} Khi F khơng compact (C1 ([a, b]), ∥.∥C1 ) theo định lý Riesz’s (nhớ C1 ([a, b]) không gian vô hạn chiều) Nhưng F compact tương đối (C0 ([a, b]), ∥.∥∞ ), nghĩa là, ∀(fh )h ⊂ F tồn (fhk )k f ∈ C0 ([a, b]) thỏa mãn lim ∥fhk − f ∥∞ = k→∞ Tính tách (C1 (Ω), ∥.∥C1 ) Định lý (C1 (Ω), ∥.∥C1 ) tách Chứng minh Cho T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (??) Vì T đồng phơi tính tách được bảo tồn qua phép đồng phôi, ta cần không gian (M, ∥.∥C0 (Ω)×C0 (Ω) ) khơng gian metric (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) tách Điều tính tách (C0 (Ω), ∥.∥∞ ) (Định lý 25), tập ?? từ tính chất tách qua giới hạn đến không gian (Xem định lý 24 (ii)) Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| Lip(f ) = Lip(f, A) := sup : x, y ∈ A, x ̸= y |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét Từ mệnh đề 36 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét (i) không Ω không lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0,  x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn điều mấu thuẫn với bất đẳng thức trước  x 1/β √ , x>y> L (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo khơng N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) không gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (4) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (5) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (70) (71), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, (6) ! m m m X X X

Ngày đăng: 05/07/2023, 14:29

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w