1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài toán biên dạng tuần hoàn với toán tử thuần nhất dương cho phương trình hàm

104 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TỐN BIÊN DẠNG TUẦN HỒN VỚI TỐN TỬ THUẦN NHẤT DƯƠNG CHO PHƯƠNG TRÌNH HÀM LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Lý thuyết ổn định đóng vai trị quan trọng tốn học nói chung, lý thuyết phương trình vi phân hay lý thuyết điều khiển Trong luận văn khảo sát tính ổn định vững hệ động lực tuyến tính, cụ thể hệ tuyến tính rời rạc, hệ tuyến tính rời rạc có chậm hệ tuyến tính không dừng không gian vô hạn chiểu 131 2 Tính chất ∆U lớp vành Một phần tử r ∈ R gọi ∆-clean r biểu diễn thành r = e + t e phần lũy đẳng R t ∈ ∆(R) Vành R gọi ∆-clean phần tử R ∆-clean Chú ý, phẩn tử ∆-clean clean Mệnh đề Các điều kiện sau tương đương vành R (1) R ∆U -vành; (2) Tất phần tử clean R ∆-clean Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Lấy r ∈ R clean, r = e + u Vì R ∆U -vành, ta có u = + a với a ∈ ∆(R) Lưu ý − 2e ∈ U (R) = + ∆(R), 2e ∈ ∆(R) Khi 2e + a ∈ ∆(R) r = e + + a = (1 − e) + (2e + a) biểu diễn ∆-clean r (2) ⇒ (1) Lấy u ∈ U (R) Khi u clean nên theo giả thiết u ∆-clean Giả sử u = e + a biểu diễn ∆-clean u với a ∈ ∆(R) e lũy đẳng Ta có = eu−1 + au−1 suy eu−1 = − au−1 khả nghịch R Vì e = Điều nghĩa u = + a ∈ + ∆(R) U (R) = + ∆(R) Định lý Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Nếu a ∈ R thỏa mãn a − a2 ∈ ∆(R), tồn tử phẩn tử lũy đẳng e ∈ R cho a − e ∈ ∆(R); (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Chứng minh (1) ⇔ (3) ⇔ (4) suy từ Mệnh đề ?? (1) ⇒ (2) Giả sử R clean ∆U -vành Khi đó, a ∈ R a − e ∈ ∆(R), với e lũy linh Tiếp theo ta chứng minh a − a2 ∈ ∆(R) Theo Mệnh đề ??, giả sử a = e + j biểu diễn ∆-clean a Khi a − a2 = (j − j ) − (ej + je) Chú ý j − j ∈ ∆(R) 2e ∈ ∆(R) Bây ta chứng minh ej + je ∈ ∆(R) Thậy vậy, ta có [ej(1 − e)]2 = = [(1 − e)je]2 theo Mệnh đề 64 ta ej − eje = ej(1 − e) ∈ ∆(R) je − eje = (1 − e)je ∈ ∆(R) Suy je − ej ∈ ∆(R) Vì ej + je = 2ej + (je − ej) ∈ ∆(R) (2) ⇒ (3) suy từ định nghĩa Rõ ràng Hệ ?? suy từ Định lý ?? Nghĩa vành đơn vị thỏa mãn tính chất ∆(R) = Cho vành R, phần tử a ∈ R gọi phần tử quy mạnh tồn x ∈ R thỏa mãn a = a2 x Một vành mà phần tử phần tử quy mạnh gọi vành quy mạnh Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành quy; (2) R ∆U -vành quy mạnh; (3) R ∆U -vành quy đơn vị; (4) R thỏa mãn tính chất x2 = x với x ∈ R (R vành Boolean) Chứng minh (1) ⇒ (2) Từ R quy, iđêan phải khác không chứa phần tử lũy đẳng khác không Ta R vành rút gọn R aben (nghĩa là, phần tử lũy đẳng R tâm) Giả sử R vành rút gọn, tồn phần tử khác không a ∈ R thỏa mãn a2 = Theo Định lý 12, có phần tử lũy đẳng e ∈ RaR thỏa mãn eRe ∼ = M2 (T ), T vành khơng tầm thường Theo Mệnh đề 65 M2 (T ) ∆U -vành, điều mâu thuẫn Định lý 40 (2) ⇒ (3) Hiển nhiên (3) ⇒ (4) Cho x ∈ R Khi x = ue u ∈ U (R) e = e ∈ R Do R ∆U -vành, nên có u = hay y x = e, x lũy đẳng Chúng ta kết luận R vành Boolean (4) ⇒ (1) Hiển nhiên Một vành R gọi nửa quy R/J(R) quy phần tử lũy đẳng nâng lên modulo J(R) Vành R gọi vành biến đổi phần tử a ∈ R, tồn e2 = e ∈ aR thỏa mãn − e ∈ (1 − a)R Hoàn toàn tương tự, có kết sau: Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành nửa quy; (2) R ∆U -vành biến đổi; (3) R/J(R) vành Boolean Hệ Cho R ∆U -vành Khi đó, điều kiện sau tương đương (1) R vành nửa quy; (2) R vành biến đổi; (3) R vành clean KHÔNG GIAN CÁC HÀM LIÊN TỤC Nhận xét Định lý Arzelà - Ascoli khơng cịn C0 (A) A ⊂ Rn khơng compact Ví dụ lấy C0b (R) không gian hàm liên tục bị chặn R, nghĩa   0 Cb (R) := f ∈ C (R) : sup |f | < ∞ R Khi dễ thấy (C0b (R), ∥.∥∞ ) không gian Banach Giả sử f : R → R hàm định nghĩa ( − |x| x ≤ f (x) = x > Giả sử h : R → R, (h = 1, 2, ) định nghĩa fh (x) := f (x + h) giả sử F := {fh : h ∈ N} Khi dễ thấy họ hàm F ⊂ C0b (R) bị chặn liên tục Tuy nhiên F không compact (C0b (R), ∥.∥∞ ) Thật vậy, ý ∃f (x) := lim fh (x) = 0, ∀x ∈ R ∥fh − f ∥∞ = 1, ∀h h→∞ Điều có nghĩa dãy hội tụ (fh )h (C0b (R), ∥.∥∞ ) khơng chấp nhận Tính tách (C0b (R), ∥.∥∞ ) Định nghĩa Giả sử (X, τ ) khơng gian topo Khi (X, τ ) gọi thỏa mãn tiên đề hai tính đếm có sở đếm cho topo τ Định lý Giả sử (X, d) không gian metric Khi (i) (X, d) tách thỏa tiên đề thứ hai tính đếm (ii) Mỗi khơng gian (X, d) tách (X, d) tách (iii) Giả sử (Y, ϱ) không gian metric khác T : (X, d) → (Y, ϱ) đồng cấu Khi (X, d) tách (Y, ϱ) tách Nhận xét Phải nhấn mạnh mục quan trọng giải tích cho mục xấp xỉ Nghĩ số hợp lý chứng minh định lý Ascoli Cuối phải nhớ lại tiêu chuẩn để kiểm tra không gian topo không gian tách Mệnh đề Giả sử (X, τ ) không gian topo Giả sử tồn họ {Ui : i ∈ I} thỏa mãn (i) Ui tập mở với i ∈ I ; (ii) Ui ∪ Uj = ∅ i ̸= j (iii) I không đêm Khi (X, τ ) khơng tách Bài tập Giả sử l∞ := {x ∈ RN : sup |x(n)| < ∞} n∈N trang bị chuẩn ∥x∥l∞ := sup |x(n)| n∈N ∞ Hãy (l , ∥.∥l∞ ) không gian Banach không tách Gợi ý: Giả sử I = 2N := {x : N → {0, 1}} ⊂ l∞ 1 := y ∈ l∞ : ∥y − x∥l∞ < x ∈ I Ux = Bl∞ x, 2 Khi ta xét họ {Ux : x ∈ I} sử dụng mệnh đề ??   n o Định lý Giả sử K ⊂ Rn tập compact Khi (C0 (K), ∥.∥∞ ) tách Chúng ta chứng minh cho trường hợp n = 1, K = [a, b] Trước ta cần phải nêu kết xấp xỉ quan trọng tốn giải tích Định lý (Định lý xấp xỉ Weierstrass) Giả sử f ∈ C([a, b]) Khi tồn dãy hàm đa thức ph : R → R, (h = 1, 2, ) với hệ số thực, nghĩa ph ∈ R[x], thỏa mãn ph → f [a, b] Nhận xét Bởi đa thức hàm đơn giản nhất, máy tính trực tiếp đánh giá đa thức Định lý có ý nghĩa lý thuyết thực tiễn Đặc biệt nội suy đa thức Chứng minh định lý ?? Chúng ta cần kết n = K = [a, b] Giả sử D tập hợp hàm đa thức với hệ số hữu tỷ, nghĩa là, D := Q[x] Ta biết D đếm Chứng minh D trù mật C0 ([a, b]), ∥.∥∞ ) tức ∀f ∈ C0 ([a, b]), ∀ϵ > 0, ∃q ∈ D cho ∥f − q∥∞ ≤ ϵ Từ định lý xấp xỉ Weierstrass, với ϵ > 0, tồn p ∈ R[x], nghĩa là, p(x) = αm xm + · · · + α1 x1 + α0 , với αi ∈ R, i = 0, 1, , m thỏa mãn ∥f − p∥∞ < ϵ (1) Định nghĩa q(x) := βm xm + · · · + β1 x1 + β0 với βi ∈ Q ϵ |αi − βi | < Pm i=0 c i , i = 0, 1, , m, c := max{|a|, |b|} Khi |p(x) − q(x)| ≤ m X i=0 ϵ |αi − βi ||x|i ≤ , ∀x ∈ [a, b] (2) Do đó, từ (??) (??) ta ∥f − q∥∞ ≤ ∥f − p∥∞ + ∥p − q∥∞ ≤ ϵ ϵ + = ϵ 2 Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa Cho R vành có đơn vị 1R Một R-mơđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-mơđun trái Cho R, S hai vành Nhóm aben (M, +) song môđun R-bên phải S -bên trái (ký hiệu S MR ) a) M R-môđun phải M S -môđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M ) 68 (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hồn tồn; (iv) A có tính chất BW Nhận xét 12 Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ 14 Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý 39 (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét 13 Định lý ?? cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) khơng thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa 35 Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý 40 (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục Hệ 15 Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau 69 Hệ 16 Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý 41 Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý 40 Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý ?? ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F Cụ thể ta thay f0 ∈ F , đó: ∥f0 − fh ∥∞ ≤ M1 , ∀h ∈ N Hơn ∥fh ∥∞ = ∥(fh − f0 ) + f0 ∥∞ ≤ ∥fh − f0 ∥∞ + ∥f0 ∥∞ ≤ M1 + ∥f0 ∥∞ := M2 Do ta có số M2 > thỏa mãn |fh (x)| ≤ M2 , ∀x ∈ K, ∀h Bây ta xây dựng dãy hội tụ theo trình chéo Cantor 70 Bước 1: (fh (x1 ))h dãy số thực [−M2 , M2 ] Suy dãy có dãy (fh(1) (x1 ))h hội tụ R; Bước 2: Xét dãy (fh(1) (x2 ))h ⊂ [−M2 , M2 ] Do dãy (fh(2) (x2 ))h hội tụ Chú ý dãy (fh(2) (x1 ))h hội tụ có dãy (fh(1) (x1 ))h hội tụ Tiếp tục trình ta Bước k: Một dãy (fh(k) )h (fh(k−1) )h thỏa mãn (fhk (xj ))h hội tụ với j = 1, k Ta có tình sau đây: Định nghĩa: gk := fkk : K → R Lưu ý rằng, i = 1, 2, , dãy (gk )k≥i dãy (fki )k≥i Cụ thể, dãy (gk )k dãy (fh )h theo cách xây dựng ∀x ∈ D (22) (gk )k hội tụ (C0 (K), ∥.∥∞ ) (23) (gk (x))k hội tụ R Tiếp tục trình ta Sử dụng giả thiết F liên tục đều, tức ∀ϵ > 0, ∃δ(ϵ) > : x, y ∈ K |x−y| < δ ⇒ |f (x)−f (y)| < ϵ, ∀f ∈ F (24) Với ϵ > thay đổi tùy ý, δ thay đổi Bởi K bị chặn hồn tồn, σ > có họ hữu hạn hình cầu B(x1 , σ), , B(xN , σ) Rn thỏa mãn N = N (σ), xi ∈ K với i = 1, , N K⊂ n [ B(xi , σ) i=1 Do tính trù mật D K , tồn yi ∈ D ∩ B(xi , σ) với i = 1, , N Cụ thể n \ K⊂ B(yi , 2σ) i=1 71 Vì ta chọn σ = δ/2 Khi tồn N = N (σ) = N (δ) = N (ϵ) D′ := {y1 , , yn } ⊂ D thỏa mãn K⊂ N [ (25) B(yi , δ) i=1 Từ (??) dãy (gk (y1 ))k , , (gk (yN ))k , ¯ hội tụ, có số nguyên k¯ = k(ϵ) với |gk (yi ) − gr (yi )|, ϵ ¯ ∀i = 1, , N ∀k, r > k, Theo (??) (??) ∀x ∈ K, ∃yi ∈ D′ thỏa |x − yi | < δ ⇒ |gk (x) − gk (yi )| < ϵ, ∀k ∈ N Từ ta có |gk (x)−gr (x)| ≤ |gk (x)−gk (yi )|+|gk (yi )−gr (yi )|+|gr (yi )−gr (x)| ≤ ϵ+ϵ+ϵ = 3ϵ ∀x ∈ K ¯ với k, r ≥ k¯ Điều có nghĩa ϵ > tồn k¯ = k(ϵ) thỏa ∥gk − gr ∥∞ ≤ 3ϵ ¯ ∀k, r > k Nghĩa (gk )k dãy Cauchy (C0 (K), ∥.∥∞ ) Từ (C0 (K), ∥.∥∞ ) đầy đủ F đóng, suy tồn f ∈ F thỏa mãn lim ∥gk − f ∥∞ = k→∞ Từ (gk )k dãy dãy (fh )h , phải F compact dãy Sự cần thiết: Cần rằng, F compact (C0 (K), ∥.∥∞ ) ta có (i), (ii) (iii) Giả sử F compact không gian metric (C0 (K), ∥.∥∞ ), đó, theo tính chất tập compact khơng gian metric, F đóng bị chặn hồn tồn bị chặn Chỉ F liên tục đều, nghĩa ta phải chứng minh (??) Theo phản chứng, giả sử ∃ϵ0 > : ∀ > 0, ∃fδ ∈ F, xδ , yδ ∈ K với |xδ −yδ | < δ |fδ (xδ )−fδ (yδ )| ≥ ϵ0 Chọn δ = 1/h ký hiệu fh := f1/h , xh := x1/h yh := y1/h Khi ta xây dựng ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K |xh − yh | < 1/h, |fh (xh ) − f (yh )| ≥ ϵ > 0, ∀h (26) 72 Từ F K compact, tồn ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K thỏa mãn lim xh = lim yh = z ∈ K fh → f ∈ F K h→∞ h→∞ Khi tồn lim fh (xh lim fh (yh ) = f (z) h→∞ h→∞ Lấy qua giới hạn (??) ta có mâu thuẫn Do đó, ta có điều phải chứng minh 23 ĐỊNH LÍ FUBINI Định lý 42 (G.Fubini - L.Tonelli) Cho F : R2n → [0, ∞] hàm đo (đối với M2n ) Khi (i) Hàm Rn ∋ y 7→ F (x, y) đo (đối với Mn ) với Ln hầu khắp nơi x ∈ Rn (ii) Hàm Z n R ∋ x 7→ F (x, y)dy Rn đo (đối với Mn ) (ii) Z F (x, y)dxdy = R2n Z Z dx Rn  F (x, y)dy Rn Z Z = dy Rn  F (x, y)dx Rn Bổ đề Cho f ∈ C0 (Rn ) Khi ϱ ∗ f → f tập compact Rn Chứng minh Cho K ⊂ Rn tập compact cho K ′ := K + B(0, 1) Theo tính liên tục f tập compact K ′ , ∀ϵ > tồn < δ = δ(ϵ, K ′ ) < thỏa mãn |f (x − y) − f (x)| ≤ ϵ, ∀x ∈ K, ∀y ∈ B(0, δ) (27) 73 Mặt khác, h ∈ N thỏa 1/h < δ x ∈ K , theo (??), Z |(f ∗ ϱh )(x) − f (x)| = f (x − y)ϱh (y)dy − f (x) n ZR

Ngày đăng: 05/07/2023, 14:29

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w