1. Trang chủ
  2. » Luận Văn - Báo Cáo

Hệ phương trình hàm tích phân phi tuyến phương pháp lặp cấp hai và khai triển tiệm cận

91 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: HỆ PHƯƠNG TRÌNH HÀM - TÍCH PHÂN PHI TUYẾN-PHƯƠNG PHÁP LẶP CẤP HAI VÀ KHAI TRIỂN TIỆM CẬN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Các nguyên lý tập có thứ tự (như bổ đề Zorn dạng tương đương nó, ) có nhiều ứng dụng lý thuyết tập hợp, Đại số, Giải tích Ngay vấn đề nghiên cứu khơng liên quan đến thứ tự việc đưa vào thứ tự thích hợp làm cho trình bày vấn đề trở nên rõ ràng ngắn gọn (ví dụ chứng minh định lí Caristi trình bày luận văn) Trong giải tích ta thường gặp phương trình với tốn tử khơng liên tục khơng compăc việc chứng minh tồn nghiệm chúng nhờ phương pháp tôpô (như phương pháp điểm bất động , phương pháp biến phân, ) gặp khó khăn Để khắc phục ta buộc phải khai thác tính chất khác tốn tính chất đại số tính chất liên quan đến thứ tự, 657 2 Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề 11 ta có kết sau Mệnh đề Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề 27, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính toán giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề 37 Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 2c(7) = 7! 315 Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét Từ mệnh đề 35 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét (i) không Ω không lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0,  x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L  x 1/β √ , Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn x > y > L điều mấu thuẫn với bất đẳng thức trước (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) Mặc dù khơng gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo khơng N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) khơng gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (1) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (2) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (30) (31), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, (3) theo (31), (fh )h dãy Cauchy (C0 (Ω), ∥.∥∞ ) Khi đó, tồn f ∈ C0 (Ω) thỏa mãn fh → f Ω Theo (32), ta Lip(f ) ≤ L, f ∈ Ω Lấy qua giới hạn (31), k → ∞, ϵ > tồn h = h(ϵ) ∈ N cho |fh (x) − f (x)| + fh (y) − f (y) − fh (z) + f (z) ≤ϵ y−z ∀h > h, x, y, z ∈ Ω, y ̸= z Điều có nghĩa lim ∥fh − f ∥Lip = h→∞ Từ tập hợp hàm đa thức chứa Lip(Ω), Lip(Ω) vô hạn chiều Cuối cùng, ta cần phải chứng minh khơng phải khơng gian Hilbert, lập luận tương tự trường hợp trước, cách sử dụng đẳng thức hình bình hành Theo hệ mệnh đề 36 ta kết sau Hệ Bao hàm C1 (Ω) ⊂ Lip(Ω) ánh xạ song Lipszhitz, nghĩa ∥f ∥C1 ≤ ∥f ∥Lip ≤ L∥f ∥C1 L ∀f ∈ C1 (Ω), nghiêm ngặt, biết Ω ⊂ Rn tập lồi, mở bị chặn Đặc biệt, C1 (Ω) khơng gian đóng (Lip(Ω), ∥.∥Lip ) Chứng minh Ta chứng minh khẳng định trường hợp n = Ω = (a, b) Theo mệnh đề 36 nhận xét 13 (ii), ta cần quan hệ bao hàm phép đẳng cự Điều suy Bài tập Nếu f ∈ C1 ([a, b]) ∥f ∥Lip = ∥f ∥C1 Tính compact Lip(Ω) Định lý Cho Ω ⊂ Rn tập mở bị chặn, giả sử F = BLip(Ω) := {f ∈ Lip(Ω) : ∥f ∥Lip ≤ 1} Khi BLip(Ω) compact (Lip(Ω), ∥.∥∞ ) Chứng minh Ta cần F compact (C0 (Ω), ∥.∥∞ ) Áp dụng định lý Arzelà - Ascoli (Định lý ??) Chứng minh (i) F bị chặn (C0 (Ω), ∥.∥∞ ): hiển nhiên theo định nghĩa (ii) F đóng (C0 (Ω), ∥.∥∞ ): nghĩa là, (fh )h ⊂ F với ∥fh − f ∥∞ , f ∈ F Thật fh ∈ FLef trightarrow|fh (x)|+ |fh (y) − fh (z)| ≤1 y−z ∀h, x, y, z ∈ Ω với y ̸= z Lấy qua giới hạn, h → ∞, ta |f (x)| + |f (y) − f (z)| ≤1 y−z ∀x, y, z ∈ Ω với y ̸= z từ f ∈ F (iii) F liên tục Ω Thật vậy, đủ để nhận thấy rằng, theo định nghĩa |f (y) − f (z)| ≤ |y − z| ∀y, z ∈ Ω, f ∈ F Ta có điều phải chứng minh Nhận xét Chú ý BC1 (Ω) := {f ∈ C1 (Ω) : ∥f ∥C1 ≤ 1} không compact (C1 (Ω), ∥.∥∞ ) Đây đặc trưng tốt có Lip(Ω) khơng có C1 (Ω) Tính tách (Lip(Ω), ∥.∥Lip ) Định lý Cho Ω ⊂ Rn tập mở bị chặn Khi (Lip(Ω), ∥.∥Lip ) khơng tách Chứng minh Ta cần tồn họ tách rời không đếm {Uα : α ∈ I} tập mở (Lip(Ω), ∥.∥Lip ) (Mệnh đề 15) Ta chia chứng minh thành hai bước Bước 1: Giả sử n = Ω = (a, b) ta chứng minh kết luận Cho {uα : α ∈ (a, b)} ⊂ (Lip(a, b)) họ hàm uα (x) := |x − α| x ∈ (a, b), α ∈ I := (a, b) Ta chứng minh ∥uα − uβ ∥Lip ≥ Lip(uα − uβ ) ≥ α ̸= β (4) Thật  |uα (x) − uβ (x) − uα (y) + uβ (y)| Lip(uα − uβ ) = sup : x, y ∈ (a, b), x ̸= y |x − y| |uα (α) − uβ (α) − uα (β) + uβ (β)| |α − β| =2 = |α − β| |α − β|  ≥ Vì họ Uα := {f ∈ Lip((a, b)) : ∥f − uα ∥Lip < ∀α ∈ I} Ta điều mong muốn Bước 2: Giả sử Ω tập mở bị chặn Từ Ω mở, tồn hình cầu n ZR Z f (x)ϱ(y)dy = f (x − y)ϱh (y)dy − n Rn ZR = (f (x − y) − f (x))ϱh (y)dy

Ngày đăng: 05/07/2023, 15:13

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN