Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 91 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
91
Dung lượng
516,21 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: THUẬT GIẢI LẶP VÀ KHAI TRIỂN TIỆM CẬN CỦA NGHIỆM THEO HAI THAM SỐ BÉ CHO PHƯƠNG TRÌNH SĨNG PHI TUYẾN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Giải tích khoảng nhánh toán học, đời vào năm năm mươi kỷ 20 Những ý tưởng Giải tích khoảng đưa luận án tiến sĩ Moore R E đại học Stanford vào năm 1962, sau xuất thành sách với tiêu đề “Interval analysis” vào năm 1966 [6] Năm 1991, tạp chí quốc tế “Interval Computation” sáng lập mốc son đánh dấu phát triển lĩnh vực này, (từ năm 1995, tạp chí phát hành tên “Reliable Computation”) Năm 1993, hội nghị quốc tế Giải tích khoảng tổ chức Lafayette Năm 1995, hội thảo quốc tế ứng dụng Giải tích khoảng tổ chức EL Paso, Texas 916 2 Nhóm giả nhị diện Mệnh đề Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i − 1 + n i = 2n−1 , 2 Pr(H, SD2n ) = + i + i ̸= 2n−1 2n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề 23 ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề 24 ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 X )| + |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸= = |SD2n | + |SD2n | + = n+1 +2 n+1 + 2n n−1 k − |R1 | k 2n 2n+1 (2n−1 + k) − 2n = k k Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = 2n+1 (2n−1 + k) 2n−1 + k k k · = = + n n n+1 n ·2 k 2 (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề 23, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề ?? ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)| 1 1 n+1 n | + |U n−1 | = |SD (2 + 4) = + 2 ,l · 2n+1 · 2n+1 2n Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề 23 ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề ?? ta có Pr(Tl , SD2n ) = X |CSD2n (x)| |Tl ||SD2n | x∈Tl l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1 n n n−1 n−1 n−1 |SD | + |U | + |SD | + |U | = 2 ,l ,l+2 · 2n+1 1 n+1 n+1 = + + + = + n n+1 4·2 2 = Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề 23, ta có 2n+1 2n+1 = n−1 = |Ui,j | = i Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1 n | + |SD2n | + |U n−1 | + |U n−1 n−1 = |SD | 2 ,j ,2 +j · 2n+1 1 (2n+1 + 2n+1 + + 4) = + n = n+1 4·2 2 = Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề 23 ta có |Ui,j | = Do Ui,j = li r ,r li+j 2n+1 i n s ⩽ l ⩽ −1 i 45 (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) idêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) tương đương ru−1 + ∈ U (R) tương đương u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆ nhóm với phép cộng R Hơn rs = r(s+1)−r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược lại dễ thấy Hệ 10 Cho R vành: (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý 18 Cho R vành có đơn vị T vành R sinh U (R) Khi đó: (1) ∆(R) = J(R) ∆(S) = ∆(R), với S vành R thỏa T ⊆ S ; (2) ∆(R) vành Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên T vành bao gồm tất tổng hữu hạn đơn vị R Do đó, theo (2) Bổ đề 12, ∆(T ) iđêan T Theo (4) Bổ đề 12, ∆(T ) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai đơn vị Do r ∈ T , suy ∆(R) ⊆ T 46 Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆ vành Jacobson R theo Bổ đề 12 (2) ∆(R) đóng với phép nhân phần tử khả nghịch phía trái phải R Bây giờ, ta giả sử S vành Jacobson chứa R đóng với phép nhân phần tử khả nghịch Nếu s ∈ S u ∈ U (R), su ∈ S = J(S) Do su quasi-regular S + su ∈ U (R) Theo Bổ đề 12 (1) s ∈ ∆(R) hay S ⊆ ∆(R) Hệ 11 Giả sử R vành mà phần tử biểu diễn thành tổng đơn vị Khi ∆(R) = J(R) Hệ 12 Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Mệnh đề 34 Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S) [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề 12 ∆(R) [ = ∆(R), nghĩa ∆ Hệ 13 Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng Hệ 14 ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Hệ 15 Cho R vành (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); 47 (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ 16 Cho R vành, ∆(R) = J(R) ∆(R/J(R)) = Định lý 19 ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với phép nhân vành ma trận division rings (2) R vành nửa địa phương (3) R clear ring thỏa ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có stable range (6) R = F G nhóm đại số trường F Bổ đề Giả sử G nhóm R Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử quasi-invertible R Định lý 20 Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R) (2) R vành Jacobson lớn đóng với phép nhân phần tử quasi-invertible R (3) G nhóm lớn R phép cộng bao gồm phần tử quasi-invertible đóng với phép nhân phần tử quasi-invertible R 15.2 Mở rộng toán tử ∆ cho vành khơng có đơn vị Bổ đề 10 Cho R vành khơng thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Mệnh đề 35 Cho R vành bất kỳ, ta có điều sau 48 (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) khơng chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử unit regular khác không Hệ 17 Cho R vành có unit regular, ∆(R) = Hệ 18 Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Mệnh đề 36 Giả sử R vành 2-primal Khi ∆(R[x]) = ∆(R) + J(R[x]) 16 Vô hạn chiều Định nghĩa 13 (i) Không gian vector thực E gọi vô hạn chiều khơng hữu hạn chiều ta viết dimR E = ∞ (ii) Nếu dimR E = ∞, hệ B ⊂ E gọi sở (đại số Hamel) E hệ vector độc lập tuyến tính (nghĩa tập hữu hạn độc lập tuyến tính) B tập lớn tất tập chứa vector độc lập tuyến tính E Điều chứng minh theo nguyên lý cực đại Hausdorff, với không gian vector vô hạn chiều E có sở B phần tử thuộc E biểu diễn (hữu hạn) theo tổ hợp tuyến tính phần tử thuộc B Khi dimR E = ∞, (E, ∥.∥E ) (E ′ , ∥.∥E ′ ) không thiết đẳng cấu topo Tuy nhiên, ta chứng minh vài tính chất topo (E ′ , ∥.∥E ′ ) tính tách cịn giữ (E, ∥.∥E ) Định lý 21 (E, ∥.∥E ) tách (E ′ , ∥.∥E ′ ) tách Trước chứng minh định lý ta cần sử dụng điều kiện trù mật cho khơng gian định chuẩn, hệ định lý Hahn-Banach thứ hai hình học 49 Mệnh đề 37 (Điều kiện trù mật không gian con) Cho (E, ∥.∥E ) không gian định chuẩn Giả sử M ⊂ E không gian không trù mật (E, ∥.∥E ) lấy x0 ∈ E \ M Khi tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ M ⟨f, x0 ⟩E ′ ×E = Chứng minh Từ định lý Hahn-Banach thứ hai hình học, tồn g ∈ E ′ cho siêu phẳng H := {x ∈ E : ⟨g, x⟩E ′ ×E = α}, tách tập M {x0 } cách nghiêm ngặt, tức ⟨g, x⟩E ′ ×E < α < ⟨g, x0 ⟩E ′ ×E ∀x ∈ M (5) Từ M không gian con, theo (??), suy λ ⟨g, x⟩E ′ ×E < α, ∀λ ∈ R, ⟨g, x⟩E ′ ×E = 0, ∀x ∈ M (6) Do đó, ta xác định hàm f ∈ E ′ f := g, ⟨g, x0 ⟩E ′ ×E ta có điều phải chứng minh Chứng minh Định lý 37 Cho D := {fh : h ∈ N} ⊂ (E ′ , ∥.∥E ′ ), trù mật Với h có phần tử xh ∈ E với ∥xh ∥ = 1 |fh (x)| ≥ ∥fh ∥E ′ Cho e := spanQ {xh : h ∈ N} D := spanR {xh : h ∈ N}, D tức là, tập tất tổ hợp tuyến tính phần tử {xh : e đếm được, D không gian h ∈ N} với hệ số thực Khi D E theo cách xây dựng ˜ ⊂ (D, ∥.∥) trù mật D 50 Để đưa kết luận chứng minh, ta cần phải D ⊂ (D, ∥.∥) trù mật Theo phản chứng, D không trù mật, lấy x0 ∈ E \ D Khi từ mệnh đề ??, tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ D ⟨f, x0 ⟩E ′ ×E = Từ D trù mật, có dãy (fhk )k mà lim ∥fhk − f ∥E ′ = k→∞ Tuy nhiên, từ ∥xhk ∥ = 1, ∥fhk − f ∥E ′ ≥ |fhk (xhk ) − f (xhk )| = |f (xhk )| ≥ ∥fhk ∥E ′ ∀k ∈ N Do dó ∥fhk ∥E ′ → k → ∞, nghĩa f ≡ 0, mâu thuẫn với f (x0 ) = Vì D = E 17 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa 14 Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa 15 Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi 51 σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép toán lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề 38 Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép toán giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép toán lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý 22 Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) 52 Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh 18 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa 16 Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa 17 Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép tốn lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai 53 khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề 39 Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Ai ∈ A∗ Hay A1 , A2, , An ∈ A ⇒ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép toán giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép toán lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý 23 Cho tập X khác rỗng Giả sử X có phép toán α Phép toán α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ 54 Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh 19 Biểu diễn ∆(R) tính chất Bổ đề 11 Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) iđêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) ru−1 + ∈ U (R) u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆(R) nhóm với phép cộng R Hơn rs = r(s + 1) − r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) suy ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược Y Y lại hiển nhiên Y Y Y (5) Lấy ri ∈ ∆( Ri ) Khi ri + U ( Ri ) ⊆ U ( Ri ) Vì Y U( i∈IY Ri ) = i∈I U (Ri )) ⊆ i∈I U (Ri ) nên i∈I Y Y i∈I ri + Yi∈I i∈I Y i∈I i∈I U (Ri ) ⊆ U (Ri ) hay U (Ri ), suy ri +U (Ri ) ⊆ U (Ri ), ∀i ∈ I nên i∈I Chiều ngược lại tương tự i∈IY Y i∈I ri ∈ (ri + Yi∈I ∆(Ri ) i∈I 55 Cho e phần tử lũy đẳng vành R Khi phần tử − 2e khả nghịch R Từ Bổ đề 12 (2) ta suy hệ sau Hệ 19 Cho R vành (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý 24 Cho R vành có đơn vị T vành R sinh U (R) Khi (1) ∆(R) = J(T ) ∆(S) = ∆(R), với S vành tùy ý R thỏa mãn T ⊆ S ; (2) ∆(R) Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên phần tử T viết thành tổng hữu hạn phần tử khả nghịch R Do đó, theo Bổ đề 12 (2) suy ∆(T ) iđêan T Theo Bổ đề 12 (4) suy ∆(T ) = J(T ) Hơn ∆(T ) = ∆(R) nên ∆(R) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai phần tử khả nghịch Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆(R) Jacobson R theo Bổ đề 12 (2) ∆(R) đóng với phép nhân phần tử khả nghịch trái phải R Bây giờ, ta giả sử S Jacobson chứa R đóng với phép nhân phần tử khả nghịch Ta phải S ⊆ ∆(R) Thật vậy, s ∈ S u ∈ U (R), su ∈ S = J(S) Do su tựa khả nghịch S nên + su ∈ U (R) Theo Bổ đề 12 (1) s ∈ ∆(R) hay S ⊆ ∆(R) Từ đặt trưng ∆(R) Định lý 37 (2) ta có hệ sau 56 Hệ 20 Giả sử R vành mà phần tử biểu diễn thành tổng phần tử khả nghịch Khi ∆(R) = J(R) Định lý cổ điển Amitsur nói Jacobson F -đại số R trường F lũy linh, với điều kiện dimF R < |F | Áp dụng Định lý 37 (1) ta thu hệ sau Hệ 21 Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Cho R vành không thiết phải có đơn vị S vành R, ta ký hiệu Sˆ vành R sinh S ∪ {1} Mệnh đề 40 Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa mãn U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S); [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa mãn I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề 12 ∆(R) [ ∩ U (R), r ∈ ∆(R) k ∈ Z Ta Lấy u = r + k · ∈ ∆(R) ¯ −1 = (u − k)u ¯ −1 = k¯ = k · ∈ U (R) Ta có u − k¯ = r ∈ ∆(R), − ku ¯ −1 = − (1 − ku ¯ −1 ) ∈ U (R), suy ru−1 ∈ ∆(R) theo Bổ đề 12 (2) Khi ku k¯ ∈ U (R) Vì ∆(R) đóng với phép nhân phần tử khả nghịch nên ta áp dụng phần chứng minh v = uk¯−1 = + rk¯−1 [ , nghĩa u−1 k¯ = s + ¯l, với s ∈ ∆(R) l ∈ Z Suy u−1 k¯ = v −1 ∈ ∆(R) [ , U (R) ∩ ∆(R) [ ⊆ U (∆(R)) [ sk¯−1 ∈ ∆(R), u−1 = sk¯−1 + k¯−1 ¯l ∈ ∆(R) [ ⊆ U (R) ∩ ∆(R) [ dễ thấy Chiều ngược lại U (∆(R)) ¯ = (3) Ta ký hiệu ¯ phép chiếu từ R lên R/I Lưu ý, I ⊆ J(R), U (R) U (R) ¯ u ∈ U (R) Khi r¯ + u¯ ∈ U (R) ¯ có phần tử Lấy r¯ ∈ ∆(R) v ∈ U (R) j ∈ I thỏa mãn r + u = v + j Hơn v + j ∈ U (R), ¯ = ∆(R) Vì U (R) ¯ = U (R) nên chiều ngược lại I ⊆ J(R) Suy ∆(R) dễ thấy 57 Áp dụng mệnh đề ta có hệ sau [ = ∆(R), nghĩa ∆ Hệ 22 Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng [ , ∆(R) ⊆ T Chứng minh ∆(R) Jacobson T = ∆(R) Vì ∆(R) chứa tất phần tử lũy linh nên T /∆(R) đẳng cấu với Z Zn := Z/nZ, với n > nhân tử bình phương Theo Mệnh đề 40 (3) Hệ 31 ta có ∆(T )/∆(R) = ∆(T /∆(R)) = J(T /∆(R)) = hay ∆(T ) = ∆(R) Từ Mệnh đề 40 (1), áp dụng cho S = Z(R) tâm R, ta có hệ sau Hệ 23 ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Ký hiệu ( R[[x]] = {a0 + a1 x + a2 x2 + · · · |ai ∈ R} = ∞ X ) xi |ai ∈ R i=0 Mỗi phần tử f ∈ R[[x]], f = ∞ X xi với x0 = gọi chuỗi lũy i=0 thừa hình thức biến x với hệ tử thuộc R Ta định nghĩa phép cộng ∞ ∞ X X i phép nhân, lấy f, g ∈ R[[x]], f = x , g = bi xi Ta định i=0 i=0 nghĩa f = g = bi với i = 0, 1, ! ∞ ∞ i X X X (ai + bi )xi , f g = f +g = i=0 ai−j bj i=0 xi j=0 Với phép tốn R[[x]] vành giao hốn có đơn vị Cho vành R, ký hiệu Tn (R) tập tất ma trận tam giác cấp n vành R, Jn (R) iđêan Tn (R) bao gồm tất ma trận tam giác cấp n thực Dn (R) vành ma trận đường chéo cấp n Từ Mệnh đề 40 (3) ta suy trực tiếp hệ sau Hệ 24 Cho R vành tùy ý Khi đó, khẳng định sau 58 (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ 25 Cho R vành Khi đó, ∆(R) = J(R) ∆(R/J(R)) = Một vành R có hạng ổn định a, x, b ∈ R thỏa mãn ax + b = 1, tồn y ∈ R cho a + by khả nghịch R Định lý sau vài lớp vành mà ∆(R) = J(R) Định lý 25 ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với tích vành ma trận thể (2) R vành nửa địa phương (3) R vành clean thỏa mãn ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có hạng ổn định (6) R = F G nhóm đại số trường F Chứng minh (1) Giả sử R đẳng cấu với tích vành ma trận thể Theo Hệ 36 ta cần ∆(R/J(R)) = Để làm điều này, ta giả sử J(R) = 0, nghĩa R tích vành ma trận thể Nếu R vành ma trận Mn (S), với S vành chứa đơn vị n ≥ Theo Định lý ??, phần tử R tổng ba phần tử khả nghịch, theo Hệ 31 ∆(R) = J(R) = Khi S thể rõ ràng ∆(S) = Do (1) suy trực tiếp từ Bổ đề 12 (5) (2) Là trường hợp đặc biệt (1) (3) Giả sử R vành clean thỏa mãn ∈U (R) Nếu e ∈ R lũy đẳng 1 − (1 − 2e) tổng hai phần tử khả 2 nghịch Điều có nghĩa phần tử R tổng ba phần tử khả nghịch Theo Hệ 31 ta suy ∆(R) = J(R) − 2e ∈ U (R) e = 59 (4) Giả sử U (R) = 1+U (R) Giả sử R U J -vành Khi đó, r ∈ ∆(R) ta có r + U (R) ⊆ U (R), nghĩa r + + J(R) ⊆ + J(R) Suy r ∈ J(R) ∆(R) = J(R) (5) Giả sử R có hạng ổn định Lấy r ∈ ∆(R), ta r ∈ J(R) Với s ∈ R ta có Rr +R(1−rs) = R Vì R có hạng ổn định nên tồn x ∈ R cho r + x(1 − sr) ∈ U (R), suy x(1 − sr) ∈ r + U (R) ⊆ U (R), (1 − sr) khả nghịch hay r ∈ J(R) (6) Giả sử R = F G nhóm đại số trường F Khi đó, phần tử R tổng phần tử khả nghịch Theo Hệ 31 ta suy ∆(R) = J(R) Ta biết vành nửa địa phương có hạng ổn định 1, điều kiện (2) (5) tương đương Bổ đề 12 Giả sử G nhóm nhóm R phép tốn cộng Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Lấy r ∈ R G nhóm cộng, rG ⊆ G (1 − r)G ⊆ G Định lý 26 Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R); (2) G Jacobson lớn đóng với phép nhân phần tử tựa khả nghịch R; (3) G nhóm lớn R phép cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Theo Định lý 37 (2) Bổ đề 13 ∆(R) Jacobson R đóng với phép nhân phần tử tựa khả nghịch Giả sử G nhóm cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Cụ thể, G Jacobson không chứa đơn vị R, theo Bổ đề 13, G đóng với phép nhân phần tử khả nghịch R Do theo Định lý 37 (2) ta G ⊆ ∆(R)