1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương trình sóng phi tuyến tính mô tả dao động của thanhđàn hồi

98 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 98
Dung lượng 543,88 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG TRÌNH SĨNG PHI TUYẾN TÍNH MƠ TẢ DAO ĐỘNG CỦA THANH ĐÀN HỒI NHỚT LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Thời đại cơng nghiệp hóa, loại vật liệu tổng hợp (gỗ công nghiệp, sợi quang học, sợi carbon, xưởng nhân tạo.v.v ) đóng vai trị quan trọng nhiều ngành khoa học kỹ thuật học, vật lý, hóa học, sinh học v.v Trong vật liệu tổng hợp, tính chất vật lý khơng liên tục dao động thành phần khác cấu tạo nên vật liệu Khi thành phần trộn lẫn với nhau, tính chất dao động nhanh dẫn tới cấu trúc vi mô trở lên phức tạp 926 2 Xấp xỉ tích chập Lp Ta thấy rằng, cho f ∈ Lp (Ω) với ≤ p < ∞, tồn (fh )h ⊂ C0c (Ω) cho fh → f Lp (Ω) Ta chứng minh tính xấp xỉ này, tìm kiếm xấp xỉ theo hàm quy Chính xác Câu hỏi: (i) Có tồn (fh )h ⊂ C1c cho fh → f Lp (Ω)? (ii) Có thể xây dựng cách rõ ràng xấp xỉ thứ h hàm fh cho f ∈ Lp (Ω)? Câu trả lời cho câu hỏi thứ hai có ý nghĩa xấp xỉ số Định nghĩa (Friedrichs’ mollifiers) Một dãy mollifiers dãy hàm ϱh : Rn → R, (h = 1, 2, ) cho, với h, ϱ ∈ C∞ (Rn ); (M o1) spt(ϱh ) ⊂ B(0, 1/h); Z ϱh dx = 1; (M o2) (M o3) Rn ϱh (x) ≥ 0, ∀x ∈ Rn (M o4) Ví dụ mollifiers: Khá đơn giản để xây dựng dãy mollifiers, hàm không biến ϱ : Rn → R thỏa mãn n ϱ ∈ C∞ c (R ), spt(ϱ) ⊂ B(0, 1), ϱ ≥ Ví dụ, cho ϱ(x) :=   exp |x| −  |x| < |x| ≥  n Khi dễ thấy ϱ ∈ C∞ c (R ) Hơn nữa, ta có dãy mollifiers định nghĩa ϱh (x) := c hn ϱ(hx), x ∈ Rn , h ∈ N −1 Z c := ϱdx Rn Chú ý: Nếu A, B ⊂ Rn , A ± B ký hiệu tập A ± B := {a ± b : a ∈ A, b ∈ B} Bài tập Chứng minh (i) Nếu A compact B đóng, A + B đóng; (ii) A B compact A + B Mệnh đề (Định nghĩa tính chất mollifiers đầu tiên) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Định nghĩa, cho h ∈ N x ∈ Rn , Z ϱh (x − y)f (y)dy, ∀x ∈ Rn fh (x) := (ϱ ∗ f )(x) := Rn Khi (i) Hàm fh : Rn → R is well defined; (ii) fh (x) = (ϱh ∗ f )(x) = (f ∗ ϱh )(x) với x ∈ Rn h ∈ N; (iii) fh (x) ∈ C0 (Rn ) với h Hàm fh gọi mollifiers thứ h f Chứng minh Để đơn giản, ta ký hiệu ϱh ≡ ϱ (i) Theo (Mo2) (Mo4), spt(ϱ) ⊂ B(0, 1/h) Khi Z Z |f (y)ϱ(x − y)|dy = Rn |f (y)ϱ(x − y)|dy B(x,1/h) Z ≤ sup ϱ Rn |f (y)|dy < ∞ B(x,1/h) Do đó, ta thay đổi x ∈ Rn , hàm gx (y) := ϱ(x − y)f (y), y ∈ Rn khả tích Rn , xác định tích phân Z Z R∋ gx (y)dy = ϱ(x − y)f (y)dy = (ϱ ∗ f )f (x), ∀x ∈ Rn Rn Rn (ii) cách thay đổi biến Z (f ∗ ϱ)(x) = f (x − y)ϱ(y)dy (z=x=y) Z f (z)ϱ(x − z)dz = (ϱ ∗ f )(x) = Rn Rn (iii) Cho x ∈ Rn xr → x, ta chứng minh (ϱ ∗ f )(xr ) → (ϱ ∗ f )(x) (1) Chú ý Z (ϱ ∗ f )(xr ) − (ϱ ∗ f )(x) = (ϱ(xr − y) − ϱ(x − y))f (y)dy, ∀r ∈ N (2) Rn Từ dãy (xr )r bị chặn Rn , tồn tập compact K ⊂ Rn thỏa mãn B(xr , 1/h) = xr − B(0, 1/h) ⊂ K, B(x, 1/h) ∈ K, ∀r ∈ N Đặc biệt ϱ(xr − y) − ϱ(x − y) = 0, ∀y ∈ / K, ∀r ∈ N (3) Bởi vì, ϱ ∈ Lip(Rn ), theo (??), tồn L > thỏa |ϱ(xr − y) − ϱ(x − y)| ≤ LχK (y)|xr − x|, ∀y ∈ Rn , ∀r ∈ N Vì ta |ϱ(xr − y)ϱ(x − y)||f (y)| ≤ LχK (y)|f (y)||xr − x|, ∀y ∈ Rn , ∀r ∈ N (4) Từ (??), (??) định lý tính hội tụ bị trội, theo (??) Nhận xét Ký hiệu ∗ tích chập hai hàm khơng gian Rn Lưu ý, kết mệnh đề ?? giữ f ∈ L1loc (Rn ) ϱ ≡ ϱh ∈ C0 (Rn ) thỏa (Mo2) Trên thực tế, xác định tích chập hai hàm g ∈ Lp (Rn ) với ≤ p ≤ ∞ f ∈ L1 (Rn ) Z (g ∗ f )(x) := g(x − y)f (y)dy Rn giữ (g ∗ f ) ∈ Lp (Rn ) ∥g ∗ f ∥Lp (Rn ) ≤ ∥g∥Lp (Rn ) ∥f ∥L1 (Rn ) Định lý (Friedrichs - Sobolev, Xấp xỉ theo tích chập Lp ) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Khi (i) f ∗ ϱh ∈ C ∞ (Rn ) với h ∈ N (ii) ∥f ∗ϱ∥Lp (Rn ) ≤ ∥f ∥Lp (Rn ) với h ∈ N, f ∈ Lp (Rn ) với p ∈ [1, ∞] (iii) spt(f ∗ ϱ) ⊂ spte (f ) + B(0, 1/h) với h ∈ N (iv) Nếu f ∈ Lp (Rn ) với ≤ p ≤ ∞, f ∗ ϱh ∈ C ∞ (Rn ) ∩ Lp (Rn ) với h ∈ N, f ∗ ϱh → f h → ∞, Lp (Rn ), biết ≤ p < ∞ Kết cho ta hai kết quan trọng Định lý (Bổ đề tính tốn biến) Cho Ω ⊂ Rn tập mở cho f ∈ L1loc (Ω) Giả sử Z f φdx = 0, ∀φ ∈ Cc∞ (Ω) (∗) Ω Khi f = hầu khắp nơi Ω Chứng minh Chứng minh điều kiện đủ Z |f |dx = với tập compact K ∈ Ω K Thật vậy, theo (??), suy f = hầu khắp nơi K, với tập compact K ∈ Ω Ta có kết luận Ta chứng minh (??) Cho tập compact K ∈ Ω, định nghĩa g : Rn → R   f (x) x ∈ K, f (x) ̸= g(x) := |f (x)|  ngược lại Khi g ∈ L1 (Rn ) spte (g) ⊆ K ⊂ Ω Cho gh := g ∗ ϱh Theo định lý ?? (iii), tồn h = h(K) ∈ N cho spt(g ∗ ϱh ) ⊆ spte (g) + B(0, 1/h) ⊆ K + B(0, 1/h) ⊂ Ω (5) với h > h Do đó, theo định lý 22 (i), (ii), gh ∈ C∞ h > h |gh (x)| ≤ ∥g∥L∞ (Rn ) = 1, ∀x ∈ Rn , ∀h ∈ N (6) c Từ (∗) ta Z f gh dx = 0, ∀h ≤ h Ω Mặt khác, từ định lý ?? (iv) (??), ta giả sử, dãy tăng, gh → g hầu khắp nơi Rn Do đó, Z Z Z f gh dx → = 0= Ω |f |dx f g dx = Ω K Định lý (Xấp xỉ theo hàm C∞ Lp ) Cho Ω ⊂ Rn tập mở p Khi C∞ c (Ω) trù mật L (Ω), ∥.∥Lp , biết ≤ p < ∞ Chứng minh Cho f ∈ Lp (Ω), định nghĩa fe : Rn → R ( f (x) x ∈ Ω fe(x) := x ∈ Rn \ Ω Chú ý fe ∈ Lp (Rn ) Cho (Ωh )h dãy tăng tập mở bị chặn cho Ω = ∪∞ h=1 Ωh , Ωh ⊂ Ωh ⊂ Ωh+1 , ∀h, định nghĩa gh (x) := χΩh (x)fe(x) fh,r (x) := (ϱr ∗ gh )(x) x ∈ Rn , h, r ∈ N Theo định lý ?? (iii) suy spt(fh,r ) ⊂ B(0, 1/r) + Ωh ⊂ Ω (7) Hơn nữa, cho h ∈ N, tồn rh = r(h) ∈ N cho rh ≥ h B(0, 1/rh ) + Ωh ⊂ Ω Định nghĩa fh (x) := (ϱrh ∗ gh )(x), x ∈ Rn , h ∈ N, (8) để đơn giản, giả sử rh = h Khi đó, theo định lý ?? (i), (ii) (??), (??), fh ∈ C∞ c (Ω) ∥fh − f ∥Lp (Ω) = ∥fh − fe∥Lp (Rn ) ≤ ∥ϱh ∗ gh − ϱh ∗ fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp Rn = ∥ϱh ∗ (gh − fe)∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) (9) ≤ ∥gh − fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) , ∀h Từ định lý ?? (iv), ϱh ∗ fe → fe Lp (Rn ), theo định lý hội tụ miền gh → fe Lp (Rn ) Khi theo (??), ta có điều phải chứng minh Mở rộng Dorroh mở rộng tail ring ∆U -vành Mệnh đề Cho R vành, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành (2) R ∆U -vành Mệnh đề R[D, C] ∆U -vành D C ∆U -vành 3.1 Các nhóm vành Định lý Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành agumentation iđêan ∇(RG) ∆U -vành Bổ đề Nếu G locally finite 2-group R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Định lý Cho R ∆U -vành G locally finite 2-group Nếu ∆(R) lũy linh, RG ∆U -vành Hệ Cho R right (or left) perfect ring G locally finite 2-group Khi đó, R ∆U -vành RG ∆U -vành Nhóm giả nhị diện Mệnh đề Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i −  1   + n i = 2n−1 , 2 Pr(H, SD2n ) =   + i + i ̸= 2n−1 2n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề ?? ta có |Rk | = 2n 2n = (2n , k) k ∪∞ h=m+1 Eh udx = ν(En± ) < ∞ 25 Do u± ∈ L1 (Ω) Từ tuyến tính ϕ tích phân, rõ ràng Z ϕ(s) = (18) u s dx Ω với hàm đơn giản đo s : Ω → R Để kết luận, cần chứng minh ′ u ∈ Lp (Ω), ∀p ∈ [1, ∞) (19) Thật vậy, với f ∈ Lp (Ω), theo xấp xỉ hàm đơn giản (Định lý 29), tồn dãy sh : Ω → R, (h = 1, 2, ) hàm đơn gian đo thỏa mãn sh → f Lp (Ω) (20) Từ (??), (??) bất đẳng thức Holder, suy Z u(sh − f )dx ≤ ∥u∥ p′ ∥f − sh ∥Lp (Ω) → L (Ω) (21) Ω Điều kiện (??), (??) tính liên tục ϕ cho Z Z ϕ(f ) = lim ϕ(sh ) = lim h→∞ u f dx, ∀f ∈ Lp (Ω) u sh dx = h→∞ Ω Ω ′ Đặc biệt, tồn u ∈ Lp (Ω) cho T (u) = ϕ Ta điều phải chứng minh Ta chứng minh (??) Trong trường hợp p = 1, giả sử M > cho EM := {x ∈ Ω : u(x) > M } Khi Z M |EM | ≤ udx = ϕ(χEM ) ≤ ∥ϕ∥(Lp (Ω))′ |EM | EM Vì |EM | = M > ∥ϕ∥(Lp (Ω))′ , từ ta suy ≤ u+ (x) ≤ ∥ϕ∥(Lp (Ω))′ hầu khắp nơi x ∈ Ω ⇔ ∥u+ ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ Tương tự ∥u− ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ 26 ′ u = u+ − u− ∈ L∞ (Ω) = L1 (Ω) Trong trường hợp < p < ∞, theo xấp xỉ hàm đơn giản, cho (sh ) dãy hàm đơn giản đo cho ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ |u| Ω, (22) lim sh (x) = |u(x)|, ∀x ∈ Ω (23) h→∞ Bây ta chứng minh ước lượng quan trọng sau ∥sh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (24) Tập hợp ′ uh (x) := |sh (x)|p −1 sign(u(x)) x ∈ Ω Khi (uh ) dãy hàm đơn giản Z Z (??) ′ ∥sh ∥pLp′ (Ω) p′ |sh | dx ≤ = Ω Ω ′ shp −1 |u|dx Z (??) = uh u dx = ϕ(uh ) Ω Z ≤ ∥ϕ∥(Lp (Ω))′ ∥uh ∥Lp (Ω) = ∥ϕ∥(Lp (Ω))′ ′ |sh |(p −1)p dx  p1 Ω Z  p1 p′ = ∥ϕ∥(Lp (Ω))′ |sh | dx p′ p Lp (Ω) = ∥ϕ∥(Lp (Ω))′ ∥sh ∥ Ω Nếu ∥sh ∥Lp′ (Ω) = 0, (??) hiển nhiên Nếu ∥sh ∥Lp′ (Ω) > 0, bất p′ p p′ đẳng thức (??) chia cho ∥sh ∥L (Ω) p ý p′ (1 − ) = Từ (??), (??) bổ đề Fatou ta có Z Z ′ p ∥u∥L = p′ (Ω) ′ Ω h→∞ ′ ′ |u|p dx ≤ lim inf Ω ′ |sh |p dx = lim inf ∥sh ∥pLp′ (Ω) ≤ ∥ϕ∥p(Lp (Ω))′ < ∞ h→∞ Do (??) < p < ∞ Bước 3: Giả sử |Ω| = ∞ ta chứng minh T is still onto Cho (Ω)h dãy tăng tập bị chặn cho Ω = ∪∞ h=1 Ωh 27 ′ Ta đồng ý với nhận định Lp (Ωh ) Lp (Ωh ), (h = 1, 2, ) với không gian ′ Lp (Ω) Lp (Ω) bao gồm hàm khuyết bên Ωh Đặc biệt, với ϕ ∈ (Lp (Ω))′ suy ϕ ∈ (Lp (Ω))′ ∥ϕ∥(Lp (Ωh ))′ ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (25) ′ Từ bước 2, với h, tồn uh ∈ Lp (Ωh ) cho ∥uh ∥Lp′ (Ω) = ∥ϕ∥(Lp (Ωh ))′ Z ϕ(f ) = (26) uh f dx, ∀f ∈ Lp (Ωh ) (27) Ωh Chú ý từ Lp (Ωh ) ⊂ Lp (Ωh+1 ), theo tính uh+1 = uh hầu khắp nơi Ωh Vì vậy, suy định nghĩa hàm u : Ω → R u(x) := uh (x) x ∈ Ωh Từ (??), (??) định lý đơn điệu hội tụ ∥u∥Lp′ (Ω) = lim ∥u∥Lp′ (Ωh ) = lim ∥uh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ < ∞, h→∞ h→∞ ′ u ∈ Lp (Ω) Hơn nữa, f ∈ Lp (Ω), theo định lý tính hội tụ trội f χΩh → f LP (Ω), thế, theo tính liên tục ϕ (??), Z ϕ(f ) = lim ϕ(f χΩh ) = lim h→∞ h→∞ Z u f dx = Ωh u f dx Ω Ta hoàn tất chứng minh Nhận xét Định lý biểu diễn Riesz mở rộng đến không gian đo (X, M, µ) Chính xác hơn, ta xác định ′ Lp (X, µ) ≡ (Lp (X, µ))′ cịn giữ • < p < ∞ cho độ đo tổng quát µ 28 • p = biết µ σ -hữu hạn Cách xác định sai trường hợp khác Support hàm Lp Ta biết rằng, cho hàm f : Rn R, support f tập hợp spt(f ) := Bao đóng{x ∈ Rn : f (x) ̸= 0} = {x ∈ Ω : f (x) ̸= 0} (S) Định nghĩa không phù hợp cho hàm f ∈ Lp (Rn ) Thật vậy, ta muốn khái niệm thỏa mãn tính chất sau f1 = f2 hầu khắp nơi Rn ⇒ spt(f1 ) = spt(f2 ), trừ số phần khơng đáng kể Nhưng trường hợp khơng Thật Ví dụ: Cho f1 := χQ : R → R f2 ≡ Khi đó, rõ ràng f1 = f2 hầu khắp nơi R spt(f1 ) = Q = R spt(f2 ) = ∅ Mệnh đề (Support thiết yếu cùa hàm) Cho f : Rn → R Ký hiệu Af := {ω ⊂ Rn : ω tập mở f = hầu khắp nơi ω} cho Af := ∪ω∈Af ω Khi Af tập mở f = hầu khắp nơi Af Tập đóng spte (f ) := Rn \ Af (ES) gọi support cần thiết f Rn Nhận xét (i) Từ định nghĩa (ES), suy ra, f1 = f2 hầu khắp nơi Rn , spte (f1 ) = spte (f2 ) (ii) Định nghĩa (S) (ES) giống hàm liên tục Chính xác 29 Bài tập Nếu f : Rn → R liên tục, Rn \ Af = {x ∈ Rn : f (x) ̸= 0} Chứng minh mệnh đề ?? Hiển nhiên Af tập mở Ta chứng minh f (x) = hầu khắp nơi x ∈ Af (28) Từ Rn khơng gian metric tách được, thỏa mãn tiên đề thứ hai tính đếm (Định lý 49) Do tồn họ đếm tập mở U = {Ui : i ∈ N} thỏa mãn với tập mở Rn hợp phần tử đếm U Với ω ∈ Af , giả sử ω = ∪i∈Jω Ui cho số phù hợp Jω ⊂ N cho J := ∪ω∈Af Jω Do Af = ∪i∈J Ui Từ f = hầu khắp nơi Ui với i ∈ J , theo (??) Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) 30 Định nghĩa Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa Cho R vành có đơn vị 1R Một R-mơđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-mơđun trái Cho R, S hai vành Nhóm aben (M, +) song môđun R-bên phải S -bên trái (ký hiệu S MR ) a) M R-môđun phải M S -môđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M )

Ngày đăng: 03/07/2023, 08:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN