Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 106 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
106
Dung lượng
584,7 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG TRÌNH SĨNG PHI TUYẾN TÍNH CHỨA SỐ HẠNG NHỚT PHI TUYẾN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Toàn luận văn chia thành chương sau đây: - Chương phần giới thiệu tổng quan bất đẳng thức thuộc loại Ostrowski với số kết trước có liên quan, đồng thời giới thiệu bố cục luận văn - Chương chủ yếu khảo sát dạng thay đổi nhỏ bất đẳng thức Ostrowski Công cụ sử dụng chủ yếu phép chứng minh qui nạp số công thức phép tính vi tích phân - Chương nhằm trình bày số áp dụng vào việc nghiên cứu hội tụ công thức cầu phương tổng quát đánh giá sai số thông qua bất đẳng thức trình bày chương trước Chương khảo sát số bất đẳng thức tích phân đặc biệt - Chương nghiên cứu số công thức cầu phương hỗn hợp 437 2 Vô hạn chiều Định nghĩa (i) Không gian vector thực E gọi vơ hạn chiều khơng hữu hạn chiều ta viết dimR E = ∞ (ii) Nếu dimR E = ∞, hệ B ⊂ E gọi sở (đại số Hamel) E hệ vector độc lập tuyến tính (nghĩa tập hữu hạn độc lập tuyến tính) B tập lớn tất tập chứa vector độc lập tuyến tính E Điều chứng minh theo nguyên lý cực đại Hausdorff, với khơng gian vector vơ hạn chiều E có sở B phần tử thuộc E biểu diễn (hữu hạn) theo tổ hợp tuyến tính phần tử thuộc B Khi dimR E = ∞, (E, ∥.∥E ) (E ′ , ∥.∥E ′ ) không thiết đẳng cấu topo Tuy nhiên, ta chứng minh vài tính chất topo (E ′ , ∥.∥E ′ ) tính tách cịn giữ (E, ∥.∥E ) Định lý (E, ∥.∥E ) tách (E ′ , ∥.∥E ′ ) tách Trước chứng minh định lý ta cần sử dụng điều kiện trù mật cho không gian định chuẩn, hệ định lý Hahn-Banach thứ hai hình học Mệnh đề (Điều kiện trù mật không gian con) Cho (E, ∥.∥E ) không gian định chuẩn Giả sử M ⊂ E không gian không trù mật (E, ∥.∥E ) lấy x0 ∈ E \ M Khi tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ M ⟨f, x0 ⟩E ′ ×E = Chứng minh Từ định lý Hahn-Banach thứ hai hình học, tồn g ∈ E ′ cho siêu phẳng H := {x ∈ E : ⟨g, x⟩E ′ ×E = α}, tách tập M {x0 } cách nghiêm ngặt, tức ⟨g, x⟩E ′ ×E < α < ⟨g, x0 ⟩E ′ ×E ∀x ∈ M (1) Từ M không gian con, theo (??), suy λ ⟨g, x⟩E ′ ×E < α, ∀λ ∈ R, ⟨g, x⟩E ′ ×E = 0, ∀x ∈ M (2) Do đó, ta xác định hàm f ∈ E ′ f := g, ⟨g, x0 ⟩E ′ ×E ta có điều phải chứng minh Chứng minh Định lý 24 Cho D := {fh : h ∈ N} ⊂ (E ′ , ∥.∥E ′ ), trù mật Với h có phần tử xh ∈ E với ∥xh ∥ = 1 |fh (x)| ≥ ∥fh ∥E ′ Cho e := spanQ {xh : h ∈ N} D := spanR {xh : h ∈ N}, D tức là, tập tất tổ hợp tuyến tính phần tử {xh : e đếm được, D không gian h ∈ N} với hệ số thực Khi D E theo cách xây dựng ˜ ⊂ (D, ∥.∥) trù mật D Để đưa kết luận chứng minh, ta cần phải D ⊂ (D, ∥.∥) trù mật Theo phản chứng, D không trù mật, lấy x0 ∈ E \ D Khi từ mệnh đề ??, tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ D ⟨f, x0 ⟩E ′ ×E = Từ D trù mật, có dãy (fhk )k mà lim ∥fhk − f ∥E ′ = k→∞ Tuy nhiên, từ ∥xhk ∥ = 1, ∥fhk − f ∥E ′ ≥ |fhk (xhk ) − f (xhk )| = |f (xhk )| ≥ ∥fhk ∥E ′ ∀k ∈ N Do dó ∥fhk ∥E ′ → k → ∞, nghĩa f ≡ 0, mâu thuẫn với f (x0 ) = Vì D = E Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề ta có kết sau Mệnh đề Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X i=1 ki số chẵn Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề ??, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính toán giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề ?? Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 2c(7) = 7! 315 ĐỊNH LÝ LAGRANGE Định lý (Định lý Lagrange) Giả sử hàm số f liên tục đoạn [a, b], khả vi khoảng (a, b) Khi tồn c ∈ (a, b) cho: f ′ (c) = f (b) − f (a) b−a Chứng minh Xét hàm số f (b) − f (a) g(x) = f (x) − (x − a) + f (a) b−a Do hàm số f (x) x − a liên tục đoạn [a, b], khả vi khoảng (a, b) nên hàm số g(x) liên tục đoạn [a, b] khả vi khoảng (a, b) Mặt khác g(a) = g(b) = Theo định lý Rolle, tồn c ∈ (a, b) cho g ′ (c) = Nhưng ta có g ′ (x) = f ′ (x) − f (b) − f (a) b−a Suy f ′ (c) = f (b) − f (a) b−a Ta có điều phải chứng minh Ý nghĩa hình học định lý Lagrange Cho C đường cong trơn với hai đầu mút A, B Khi C tồn điểm mà tiếp tuyến C điểm song song với AB Nhận xét Thơng qua cách chứng minh định lý Lagrange hệ định lý Rolle Tuy nhiên định lý Rolle lại trường hợp riêng định lý Lagrange giá trị hai đầu mút (tức f (a) = f (b)) Sau ta trình bày cơng thức Lagrange dạng khác Giả sử ξ ∈ (a, b) Đặt θ = ξ−a Khi đó: b−a ξ = a + θ(b − a) 0 thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X (22) Ω Điều kiện (62), (65) tính liên tục ϕ cho Z Z ϕ(f ) = lim ϕ(sh ) = lim h→∞ u sh dx = h→∞ Ω u f dx, ∀f ∈ Lp (Ω) Ω ′ Đặc biệt, tồn u ∈ Lp (Ω) cho T (u) = ϕ Ta điều phải chứng minh Ta chứng minh (63) Trong trường hợp p = 1, giả sử M > cho EM := {x ∈ Ω : u(x) > M } Khi Z udx = ϕ(χEM ) ≤ ∥ϕ∥(Lp (Ω))′ |EM | M |EM | ≤ EM Vì |EM | = M > ∥ϕ∥(Lp (Ω))′ , từ ta suy ≤ u+ (x) ≤ ∥ϕ∥(Lp (Ω))′ hầu khắp nơi x ∈ Ω ⇔ ∥u+ ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ Tương tự ∥u− ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ ′ u = u+ − u− ∈ L∞ (Ω) = L1 (Ω) Trong trường hợp < p < ∞, theo xấp xỉ hàm đơn giản, cho (sh ) dãy hàm đơn giản đo cho ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ |u| Ω, (23) lim sh (x) = |u(x)|, ∀x ∈ Ω (24) h→∞ Bây ta chứng minh ước lượng quan trọng sau ∥sh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (25) 29 Tập hợp ′ uh (x) := |sh (x)|p −1 sign(u(x)) x ∈ Ω Khi (uh ) dãy hàm đơn giản Z Z (66) ′ ∥sh ∥pLp′ (Ω) p′ |sh | dx ≤ = Ω Ω ′ shp −1 |u|dx Z (62) = uh u dx = ϕ(uh ) Ω Z ≤ ∥ϕ∥(Lp (Ω))′ ∥uh ∥Lp (Ω) = ∥ϕ∥(Lp (Ω))′ (p′ −1)p |sh | p1 dx Ω Z p1 p′ = ∥ϕ∥(Lp (Ω))′ |sh | dx Ω p′ = ∥ϕ∥(Lp (Ω))′ ∥sh ∥Lpp (Ω) Nếu ∥sh ∥Lp′ (Ω) = 0, (68) hiển nhiên Nếu ∥sh ∥Lp′ (Ω) > 0, bất đẳng thức (68) chia cho ∥sh ∥ p′ p Lp′ (Ω) Từ (67), (68) bổ đề Fatou ta có Z Z ′ p ∥u∥L = p′ (Ω) ′ |u|p dx ≤ lim inf Ω h→∞ Ω p ý p′ (1 − ) = ′ ′ ′ |sh |p dx = lim inf ∥sh ∥pLp′ (Ω) ≤ ∥ϕ∥p(Lp (Ω))′ < ∞ h→∞ Do (63) < p < ∞ Bước 3: Giả sử |Ω| = ∞ ta chứng minh T is still onto Cho (Ω)h dãy tăng tập bị chặn cho Ω = ∪∞ h=1 Ωh ′ Ta đồng ý với nhận định Lp (Ωh ) Lp (Ωh ), (h = 1, 2, ) với không gian ′ Lp (Ω) Lp (Ω) bao gồm hàm khuyết bên Ωh Đặc biệt, với ϕ ∈ (Lp (Ω))′ suy ϕ ∈ (Lp (Ω))′ ∥ϕ∥(Lp (Ωh ))′ ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (26) ′ Từ bước 2, với h, tồn uh ∈ Lp (Ωh ) cho ∥uh ∥Lp′ (Ω) = ∥ϕ∥(Lp (Ωh ))′ Z ϕ(f ) = Ωh uh f dx, ∀f ∈ Lp (Ωh ) (27) (28) 30 Chú ý từ Lp (Ωh ) ⊂ Lp (Ωh+1 ), theo tính uh+1 = uh hầu khắp nơi Ωh Vì vậy, suy định nghĩa hàm u : Ω → R u(x) := uh (x) x ∈ Ωh Từ (69), (70) định lý đơn điệu hội tụ ∥u∥Lp′ (Ω) = lim ∥u∥Lp′ (Ωh ) = lim ∥uh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ < ∞, h→∞ h→∞ ′ u ∈ Lp (Ω) Hơn nữa, f ∈ Lp (Ω), theo định lý tính hội tụ trội f χΩh → f LP (Ω), thế, theo tính liên tục ϕ (71), Z ϕ(f ) = lim ϕ(f χΩh ) = lim h→∞ h→∞ Z u f dx = Ωh u f dx Ω Ta hoàn tất chứng minh Nhận xét 14 Định lý biểu diễn Riesz mở rộng đến khơng gian đo (X, M, µ) Chính xác hơn, ta xác định ′ Lp (X, µ) (Lp (X, à)) cũn gi nu ã < p < ∞ cho độ đo tổng quát µ • p = biết µ σ -hữu hạn Cách xác định sai trường hợp khác Support hàm Lp Ta biết rằng, cho hàm f : Rn R, support f tập hợp spt(f ) := Bao đóng{x ∈ Rn : f (x) ̸= 0} = {x ∈ Ω : f (x) ̸= 0} (S) Định nghĩa khơng cịn phù hợp cho hàm f ∈ Lp (Rn ) Thật vậy, ta muốn khái niệm thỏa mãn tính chất sau f1 = f2 hầu khắp nơi Rn ⇒ spt(f1 ) = spt(f2 ), trừ số phần không đáng kể 31 Nhưng trường hợp khơng Thật Ví dụ: Cho f1 := χQ : R → R f2 ≡ Khi đó, rõ ràng f1 = f2 hầu khắp nơi R spt(f1 ) = Q = R spt(f2 ) = ∅ Mệnh đề (Support thiết yếu cùa hàm) Cho f : Rn → R Ký hiệu Af := {ω ⊂ Rn : ω tập mở f = hầu khắp nơi ω} cho Af := ∪ω∈Af ω Khi Af tập mở f = hầu khắp nơi Af Tập đóng spte (f ) := Rn \ Af (ES) gọi support cần thiết f Rn Nhận xét 15 (i) Từ định nghĩa (ES), suy ra, f1 = f2 hầu khắp nơi Rn , spte (f1 ) = spte (f2 ) (ii) Định nghĩa (S) (ES) giống hàm liên tục Chính xác Bài tập Nếu f : Rn → R liên tục, Rn \ Af = {x ∈ Rn : f (x) ̸= 0} Chứng minh mệnh đề 48 Hiển nhiên Af tập mở Ta chứng minh f (x) = hầu khắp nơi x ∈ Af (29) Từ Rn khơng gian metric tách được, thỏa mãn tiên đề thứ hai tính đếm (Định lý 44) Do tồn họ đếm tập mở U = {Ui : i ∈ N} thỏa mãn với tập mở Rn hợp phần tử đếm U Với ω ∈ Af , giả sử ω = ∪i∈Jω Ui 32 cho số phù hợp Jω ⊂ N cho J := ∪ω∈Af Jω Do Af = ∪i∈J Ui Từ f = hầu khắp nơi Ui với i ∈ J , theo (72) Các khái niệm Định nghĩa 10 Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa 11 Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa 12 Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R 33 Định nghĩa 13 Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 8.0.1 Định lý đồng cấu vành Định nghĩa 14 Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo toàn hai phép toán cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 8.0.2 Một số kết liên quan Các vành nhóm Ánh xạ ε : RG → R cho ε( X g rg g) = X rg ánh xạ mở rộng g Iđêan ∇(RG) = ker(ε) gọi iđêan mở rộng Định lý 16 Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành iđêan mở rộng ∇(RG) ∆U -vành Chứng minh Đặt ∇ = ∇(RG) Giả sử G nhóm hữu hạn có cấp 1+2n R ∆U -vành Theo Mệnh đề ??, ta có ∈ ∆(R), 1+2n ∈ U (R) Khi RG có biểu diễn RG = ∇⊕H với H ∼ = R theo [4] Đặt ∇ = eRG H = (1 − e)RG Rõ ràng e phần tử tâm RG Nếu RG ∆U -vành, ∇ = eRG ∆U -vành theo Mệnh đề ?? Ngược lại, giả sử ∇ = eRG ∆U -vành Vì H ∼ = R nên H ∆U -vành Theo Bổ đề 10, RG ∆U -vành Một nhóm gọi hữu hạn địa phương nhóm sinh hữu hạn phần tử hữu hạn Bổ đề Nếu G 2-nhóm hữu hạn địa phương R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) 34 Chứng minh Giả sử G 2-nhóm hữu hạn địa phương R ∆U -vành ¯ Suy Khi R¯ := R/J(R) ∆U -vành Từ ∆(R) lũy linh, ∈ N (R) ¯ ⊆ N (RG) ¯ ¯ ∇(RG) theo [4, Hệ quả, trang 682] Do đó, ∇(RG) iđêan lũy ¯ linh chứa J(RG) Ta kiểm tra J(R)G ⊆ J(RG), J((R/J(R))G) ∼ = J(RG/J(R)G) = J(RG)/J(R)G Do ∇(RG) ⊆ J(RG) ⊆ ∆(RG) Định lý 17 Cho R ∆U -vành G 2-nhóm hữu hạn địa phương Nếu ∆(R) lũy linh, RG ∆U -vành Chứng minh Lấy u ∈ U (RG) Khi ε(u) = + ε(u − 1) ∈ U (R) theo Bổ đề ?? (1) áp dụng cho ánh xạ mở rộng ε i Vì R ∆U -vành nên tồn j ∈ ∆(R) thỏa mãn ε(u) = + j Theo Bổ đề ?? (1) ta có ε(u − + j) = hay u − + j ∈ ∇(RG) ⊆ ∆(RG) Do u ∈ − j + ∆(RG) suy u ∈ + ∆(RG) Hệ Cho R vành hồn chỉnh phải trái G 2-nhóm hữu hạn địa phương Khi đó, R ∆U -vành RG ∆U -vành 10 Cấu trúc nhóm số nhóm hữu hạn Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm Dn có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ n, ⩽ l ⩽ n − 1, ⩽ i ⩽ n − 1, ⩽ j ⩽ n − Sau số tính chất nhóm nhị diện, xem [?] Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Rk nhóm xiclíc cấp n , d = (n, k), với ⩽ k ⩽ n; d (ii) Tl nhóm xiclíc cấp với ⩽ l ⩽ n − 1; (iii) Ui,j nhóm nhị diện cấp ⩽ j ⩽ n − 2n , d = (n, i), với i|n, ⩽ i ⩽ n− d 35 Mệnh đề 10 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Nếu n lẻ CDn (ri ) = R1 , CDn (1) = Dn , CDn (rj s) = Tj với ⩽ i ⩽ n − 1, ⩽ j ⩽ n − 1; (ii) Nếu n chẵn CDn (1) = Dn , CDn (rm ) = Dn , CDn (ri ) = R1 , CDn (rj s) = Um,j n với m = , ⩽ i ⩽ n − 1, i ̸= m, ⩽ j ⩽ n − Mệnh đề 11 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm nhóm Dn Khi H nhóm sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với k|n, ⩽ k ⩽ n, ⩽ l ⩽ n − 1, i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn , s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Ui,j nhóm Q4n có dạng sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n, ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − Sau số tính chất nhóm quaternion suy rộng, xem [?] Mệnh đề 12 Cho nhóm quaternion suy rộng Q4n với n ⩾ Khi 2n , d = (2n, k), với ⩽ k ⩽ 2n; d 4n (ii) Ui,j nhóm quaternion suy rộng cấp , d = (n, i), d với ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − (i) Rk nhóm xiclíc cấp 36 Mệnh đề 13 Cho nhóm Quaternion suy rộng Q4n với n ⩾ Khi CQ4n (1) = CQ4n (rn ) = Q4n , CQ4n (ri ) = R1 , CQ4n (rj s) = Un,j với ⩽ i ⩽ 2n − 1, i ̸= n, ⩽ j ⩽ 2n − Mệnh đề 14 Cho nhóm quaternion suy rộng Q4n với n ⩾ 2, H nhóm Q4n Khi H nhóm sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với k|2n, ⩽ k ⩽ 2n, ⩽ i ⩽ n, i|n, ⩽ j ⩽ i − Cho nhóm giả nhị diện n n−1 SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 −1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm nhóm giả nhị diện SD2n có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n , ⩽ l ⩽ 2n − 1, ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − Sau số tính chất nhóm giả nhị diện, xem [?] Mệnh đề 15 Cho nhóm giả nhị diện SD2n với n ⩾ Khi (i) Rk nhóm xiclíc cấp 2n d = (2n , k), với ⩽ k ⩽ 2n ; d (ii) Tl nhóm xiclíc cấp l chẵn, cấp l lẻ với ⩽ l ⩽ 2n − 1; (iii) Ui,j nhóm giả nhị diện i lẻ với ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − 1; Ui,j nhóm nhị diện i chẵn j chẵn, nhóm quaternion tổng quát i chẵn j lẻ với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − 1; Với i = 2n−1 , Ui,j nhóm xiclíc cấp j lẻ, Ui,j ∼ = C2 × C2 j chẵn 2n+1 Trong tất trường hợp nhóm Ui,j có cấp d d = (2n , i) Mệnh đề 16 Cho nhóm giả nhị diện SD2n với n ⩾ Khi CSD2n (1) = CSD2n (r2 n−1 ) = SD2n , CSD2n (ri ) = R1 , với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − CSD2n (rj s) = U2n−1 ,j 37 Mệnh đề 17 Cho nhóm giả nhị diện SD2n với n ⩾ 3, H nhóm SD2n Khi nhóm H SD2n nhóm sau (i) Rk = ⟨rk ⟩ với ⩽ k ⩽ 2n ; (ii) Tl = ⟨rl s⟩ với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ; (iii) Ui,j với ⩽ i ⩽ 2n−2 , i|2n , ⩽ j ⩽ i−1, U2n−1 ,j với ⩽ j ⩽ 2n−1 − 1, j chẵn 11 Xấp xỉ tích chập Lp Ta thấy rằng, cho f ∈ Lp (Ω) với ≤ p < ∞, tồn (fh )h ⊂ C0c (Ω) cho fh → f Lp (Ω) Ta chứng minh tính xấp xỉ này, tìm kiếm xấp xỉ theo hàm quy Chính xác Câu hỏi: (i) Có tồn (fh )h ⊂ C1c cho fh → f Lp (Ω)? (ii) Có thể xây dựng cách rõ ràng xấp xỉ thứ h hàm fh cho f ∈ Lp (Ω)? Câu trả lời cho câu hỏi thứ hai có ý nghĩa xấp xỉ số Định nghĩa 15 (Friedrichs’ mollifiers) Một dãy mollifiers dãy hàm ϱh : Rn → R, (h = 1, 2, ) cho, với h, ϱ ∈ C∞ (Rn ); (M o1) spt(ϱh ) ⊂ B(0, 1/h); Z ϱh dx = 1; (M o2) (M o3) Rn ϱh (x) ≥ 0, ∀x ∈ Rn (M o4) Ví dụ mollifiers: Khá đơn giản để xây dựng dãy mollifiers, hàm không biến ϱ : Rn → R thỏa mãn n ϱ ∈ C∞ c (R ), spt(ϱ) ⊂ B(0, 1), ϱ ≥ 38 Ví dụ, cho ϱ(x) := exp |x| − |x| < |x| ≥ n Khi dễ thấy ϱ ∈ C∞ c (R ) Hơn nữa, ta có dãy mollifiers định nghĩa ϱh (x) := c hn ϱ(hx), x ∈ Rn , h ∈ N −1 Z c := ϱdx Rn Chú ý: Nếu A, B ⊂ Rn , A ± B ký hiệu tập A ± B := {a ± b : a ∈ A, b ∈ B} Bài tập Chứng minh (i) Nếu A compact B đóng, A + B đóng; (ii) A B compact A + B Mệnh đề 18 (Định nghĩa tính chất mollifiers đầu tiên) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Định nghĩa, cho h ∈ N x ∈ Rn , Z fh (x) := (ϱ ∗ f )(x) := ϱh (x − y)f (y)dy, ∀x ∈ Rn Rn Khi (i) Hàm fh : Rn → R is well defined; (ii) fh (x) = (ϱh ∗ f )(x) = (f ∗ ϱh )(x) với x ∈ Rn h ∈ N; (iii) fh (x) ∈ C0 (Rn ) với h Hàm fh gọi mollifiers thứ h f Chứng minh Để đơn giản, ta ký hiệu ϱh ≡ ϱ (i) Theo (Mo2) (Mo4), spt(ϱ) ⊂ B(0, 1/h) 39 Khi Z Z |f (y)ϱ(x − y)|dy = Rn |f (y)ϱ(x − y)|dy B(x,1/h) Z ≤ sup ϱ Rn |f (y)|dy < ∞ B(x,1/h) Do đó, ta thay đổi x ∈ Rn , hàm gx (y) := ϱ(x − y)f (y), y ∈ Rn khả tích Rn , xác định tích phân Z Z ϱ(x − y)f (y)dy = (ϱ ∗ f )f (x), ∀x ∈ Rn gx (y)dy = R∋ Rn Rn (ii) cách thay đổi biến Z f (x − y)ϱ(y)dy (f ∗ ϱ)(x) = (z=x=y) Z f (z)ϱ(x − z)dz = (ϱ ∗ f )(x) = Rn Rn (iii) Cho x ∈ Rn xr → x, ta chứng minh (ϱ ∗ f )(xr ) → (ϱ ∗ f )(x) (30) Chú ý Z (ϱ ∗ f )(xr ) − (ϱ ∗ f )(x) = (ϱ(xr − y) − ϱ(x − y))f (y)dy, ∀r ∈ N (31) Rn Từ dãy (xr )r bị chặn Rn , tồn tập compact K ⊂ Rn thỏa mãn B(xr , 1/h) = xr − B(0, 1/h) ⊂ K, B(x, 1/h) ∈ K, ∀r ∈ N Đặc biệt ϱ(xr − y) − ϱ(x − y) = 0, ∀y ∈ / K, ∀r ∈ N (32) Bởi vì, ϱ ∈ Lip(Rn ), theo (41), tồn L > thỏa |ϱ(xr − y) − ϱ(x − y)| ≤ LχK (y)|xr − x|, ∀y ∈ Rn , ∀r ∈ N Vì ta |ϱ(xr − y)ϱ(x − y)||f (y)| ≤ LχK (y)|f (y)||xr − x|, ∀y ∈ Rn , ∀r ∈ N Từ (40), (41) định lý tính hội tụ bị trội, theo (39) (33) 40 Nhận xét 16 Ký hiệu ∗ tích chập hai hàm không gian Rn Lưu ý, kết mệnh đề 35 giữ f ∈ L1loc (Rn ) ϱ ≡ ϱh ∈ C0 (Rn ) thỏa (Mo2) Trên thực tế, xác định tích chập hai hàm g ∈ Lp (Rn ) với ≤ p ≤ ∞ f ∈ L1 (Rn ) Z (g ∗ f )(x) := g(x − y)f (y)dy Rn giữ (g ∗ f ) ∈ Lp (Rn ) ∥g ∗ f ∥Lp (Rn ) ≤ ∥g∥Lp (Rn ) ∥f ∥L1 (Rn ) Định lý 18 (Friedrichs - Sobolev, Xấp xỉ theo tích chập Lp ) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Khi (i) f ∗ ϱh ∈ C ∞ (Rn ) với h ∈ N (ii) ∥f ∗ϱ∥Lp (Rn ) ≤ ∥f ∥Lp (Rn ) với h ∈ N, f ∈ Lp (Rn ) với p ∈ [1, ∞] (iii) spt(f ∗ ϱ) ⊂ spte (f ) + B(0, 1/h) với h ∈ N (iv) Nếu f ∈ Lp (Rn ) với ≤ p ≤ ∞, f ∗ ϱh ∈ C ∞ (Rn ) ∩ Lp (Rn ) với h ∈ N, f ∗ ϱh → f h → ∞, Lp (Rn ), biết ≤ p < ∞ Kết cho ta hai kết quan trọng Định lý 19 (Bổ đề tính tốn biến) Cho Ω ⊂ Rn tập mở cho f ∈ L1loc (Ω) Giả sử Z f φdx = 0, ∀φ ∈ Cc∞ (Ω) (∗) Ω Khi f = hầu khắp nơi Ω Chứng minh Chứng minh điều kiện đủ Z |f |dx = với tập compact K ∈ Ω K Thật vậy, theo (43), suy f = hầu khắp nơi K, với tập compact K ∈ Ω Ta có kết luận Ta chứng minh (43) (34) 41 Cho tập compact K ∈ Ω, định nghĩa g : Rn → R f (x) x ∈ K, f (x) ̸= g(x) := |f (x)| ngược lại Khi g ∈ L1 (Rn ) spte (g) ⊆ K ⊂ Ω Cho gh := g ∗ ϱh Theo định lý 32 (iii), tồn h = h(K) ∈ N cho spt(g ∗ ϱh ) ⊆ spte (g) + B(0, 1/h) ⊆ K + B(0, 1/h) ⊂ Ω với h > h Do đó, theo định lý ?? (i), (ii), gh ∈ C∞ h > h |gh (x)| ≤ ∥g∥L∞ (Rn ) = 1, ∀x ∈ Rn , ∀h ∈ N (35) c Từ (∗) ta Z f gh dx = 0, ∀h ≤ h Ω Mặt khác, từ định lý 32 (iv) (64), ta giả sử, dãy tăng, gh → g hầu khắp nơi Rn Do đó, Z Z Z f gh dx → = 0= Ω |f |dx f g dx = Ω K Định lý 20 (Xấp xỉ theo hàm C∞ Lp ) Cho Ω ⊂ Rn tập p mở Khi C∞ c (Ω) trù mật L (Ω), ∥.∥Lp , biết ≤ p < ∞ Chứng minh Cho f ∈ Lp (Ω), định nghĩa fe : Rn → R ( f (x) x ∈ Ω fe(x) := x ∈ Rn \ Ω Chú ý fe ∈ Lp (Rn ) Cho (Ωh )h dãy tăng tập mở bị chặn cho Ω = ∪∞ h=1 Ωh , Ωh ⊂ Ωh ⊂ Ωh+1 , ∀h, 42 định nghĩa gh (x) := χΩh (x)fe(x) fh,r (x) := (ϱr ∗ gh )(x) x ∈ Rn , h, r ∈ N Theo định lý 32 (iii) suy spt(fh,r ) ⊂ B(0, 1/r) + Ωh ⊂ Ω (36) Hơn nữa, cho h ∈ N, tồn rh = r(h) ∈ N cho rh ≥ h B(0, 1/rh ) + Ωh ⊂ Ω (37) Định nghĩa fh (x) := (ϱrh ∗ gh )(x), x ∈ Rn , h ∈ N, để đơn giản, giả sử rh = h Khi đó, theo định lý 32 (i), (ii) (45), (46), fh ∈ C∞ c (Ω) ∥fh − f ∥Lp (Ω) = ∥fh − fe∥Lp (Rn ) ≤ ∥ϱh ∗ gh − ϱh ∗ fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp Rn = ∥ϱh ∗ (gh − fe)∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) (38) ≤ ∥gh − fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) , ∀h Từ định lý 32 (iv), ϱh ∗ fe → fe Lp (Rn ), theo định lý hội tụ miền gh → fe Lp (Rn ) Khi theo (47), ta có điều phải chứng minh 12 Tính chất ∆U lớp vành Một phần tử r ∈ R gọi ∆-clean r biểu diễn thành r = e + t e phần lũy đẳng R t ∈ ∆(R) Vành R gọi ∆-clean phần tử R ∆-clean Chú ý, phẩn tử ∆-clean clean Mệnh đề 19 Các điều kiện sau tương đương vành R