1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương trình sóng phi tuyến với điều kiện biên chứa số hạng menmory ở một phần bên trái

99 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 99
Dung lượng 563,68 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG TRÌNH SĨNG PHI TUYẾN VỚI ĐIỀU KIỆN BIÊN CHỨA SỐ HẠNG MENMORY Ở MỘT PHẦN BÊN TRÁI LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Khái niệm sở quy P.S Alexandroff đưa vào năm 1960 Năm 1962, A.V Arhangel’skii chứng minh không gian X ảnh compact mở không gian mêtric X có sở quy theo điểm Sau đó, S Lin đưa khái niệm ánh xạ 1-phủ dãy vào năm 1996 Trong [4], Shou Lin chứng minh kết T1-không gian quy rằng, khơng gian X có mạng -mạnh gồm cs -phủ đếm X có mạng -mạnh gồm cs-phủ hữu hạn, X khơng gian đối xứng có sở yếu đếm 167 Không gian hàm p-khả tích Lp (Ω) Ta nhớ lại khơng gian hàm p-khả tích độ đo Lebesgue n chiều Định nghĩa Cho A ⊂ Rn tập đo Lebesgue p ∈ [1, ∞], Lp (A) := {f : A → R : f đo Lebesgue ∥f ∥Lp < +∞} ∥f ∥Lp Z 1/p   p |f (x)| dx = ∥f ∥Lp (A) := A   ≤ p ≤ ∞ inf{M > : |f (x)| ≤ M, x ∈ A} p = ∞ Số ∥f ∥Lp gọi chuẩn Lp f A Định lý (Fisher - Riesz) (Lp (A), ∥.∥Lp ) không gian Banach ≤ p ≤ ∞ Hơn L2 (A) khơng gian Hilbert với tích vơ hướng Z (f, g)L2 := f g dx f, g ∈ L2 (A) A Theo kết định lý Riesz - Fisher ta thu kết hữu ích Định lý Cho Ω ⊂ Rn tập mở, (fh )h ⊂ Lp (Ω) f ∈ Lp (Ω) với ≤ p ≤ ∞ Giả sử lim ∥fh − f ∥Lp (Ω) = h→∞ Khi đó, tồn dãy (fhk )k hàm g ∈ Lp (Ω) thỏa mãn (i) fhk (x) → f (x) hầu khắp nơi x ∈ Ω (ii) |fhk (x)| ≤ g(x) hầu khắp nơi x ∈ Ω, ∀k Nhận xét Nó khơng cịn giữ ý nghĩa (MC) ⇒ fh (x) → f (x) hầu khắp nơi x ∈ Ω Nhận xét Chú ý C0 ⊂ Lp (Ω) với p ∈ [1, ∞], với Ω ⊂ Rn tập mở bị chặn, khơng quan hệ bao hàm khơng giữ giữ quan hệ bao hàm C0c (Ω) ⊂ Lp (Ω) với p ∈ [1, ∞] tập mở Ω, C0c (Ω) := {f ∈ C0 (Ω) : spt(f ) compact chứa Ω} spt(f ) := Bao đóng{x ∈ Ω : f (x) ̸= 0} Hơn nhớ lại C0 (Ω, ∥.∥L2 ) không gian tuyến tính định chuẩn, khơng phải khơng gian Banach Tính compact (Lp (Ω), ∥.∥Lp ) Trong mục thảo luận kết compact không gian Lp Chúng ta nêu kết không chứng minh Cho f : Rn → R v ∈ Rn , ta định nghĩa τv f : Rn → R hàm v -dịch chuyển f định nghĩa (τv f )(x) := f (x + v) Định lý (M.Riesz - Fréchét - Kolmogorov) Cho F tập bị chặn (Lp (Rn ), ∥.∥Lp ) với ≤ p < ∞ Giả sử lim ∥τv f − f ∥Lp = v→0 với f ∈ F , nghĩa ∀ϵ > 0, ∃δ(ϵ) > : ∥τv f − f ∥Lp < ϵ, ∀v ∈ Rn với |v| < δ, ∀f ∈ F (N EF ) Khi F|Ω := {f |Ω : f ∈ F} compact tương đối (Lp (Ω), ∥.∥Lp ), nghĩa bao đóng compact (Lp (Ω), ∥.∥Lp ), với tập mở Ω ⊂ Rn với độ đo Lebesgue hữu hạn Từ định lý ?? ta suy điều kiện compact (Lp (Ω), ∥.∥Lp ) Nếu f : Ω → R, ta ký hiệu fe : Rn → R hàm định nghĩa ( f (x) x ∈ Ω fe(x) := x ∈ /Ω Hệ Cho Ω ⊂ Rn tập mở với độ đo hữu hạn, cho F ⊂ Lp (Ω) cho Fe := {fe : f ∈ F} Giả sử (i) F bị chặn (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞; (ii) lim ∥τv f − f ∥Lp = với f ∈ F , nghĩa Fe thỏa mãn (ENF ) v→0 Khi F compact tương đối (Lp (Ω), ∥.∥Lp ) Chứng minh Từ định lý ??, Fe tập compact tương đối Lưu ý Fe compact dãy tương đối (Lp (Rn ), ∥.∥Lp ) F compact dãy tương đối (Lp (Ω), ∥.∥Lp ) Do đặc tính tập compact không gian metric (Định lý ??) có điều phải chứng minh Cuối cùng, nhớ lại đặc tính compact (Lp (Rn ), ∥.∥Lp ) Định lý Cho F ⊂ Lp (Rn ) với ≤ p < ∞ Khi F compact tương đối (Lp (Rn ), ∥.∥Lp ) (i) F bị chặn (Lp (Rn ), ∥.∥Lp ); (ii) với ϵ > 0, tồn rϵ > thỏa mãn ∥f ∥Lp (Rn \B(0,rϵ )) < ϵ ∀f ∈ F; (iii) lim ∥τv f − f ∥Lp = f ∈ F v→∞ Nhận xét (i) Giả thiết (ENF ) cần thiết định lý ?? Thật vậy, xét họ F := {fh : h ∈ N} fh : R → R định nghĩa   ≤ x ≤ h fh (x) := h 0 ngược lại Ω := (0, 1) Khi dễ thấy ∥f ∥L1 R = với h ∈ N F|Ω không compact tương đối (L1 (Ω), ∥.∥L1 ), khơng có dãy (fh )h hội tụ L1 (Ω) Mặt khác, v > 0, với h > 1/v Z Z v ∥τv fh − fh ∥L1 (R) ≥ fh (x + v) dx = −∞ fh (x) = Do đó, (ENF ) khơng cịn cho F (ii) Nếu Ω khơng có độ đo hữu hạn, kết định lý ?? khơng cịn Thật vậy, xét họ F := {fh : h ∈ N} fh : R → R định nghĩa fh (x) := f (x + h) f ∈ Lip(R) với spt(f ) = [−a, a], a > 0, f không triệt tiêu Khi ∥f ∥L1 (R) = ∥f ∥L1 (R) > ∀h (1) Hơn F thỏa mãn (ENF ), |τv f − f (x)| = |f (x + v)f (x)| ≤ L|v|X [−a−1,a+1] (x) ∀x ∈ R, v ∈ [−1, 1] ∥τc fh − fh ∥L1 (R) = ∥τv f − f ∥L1 (R) ∀h L := Lip(f ) Cho Ω := R quan sát F = F|Ω không compact tương đối (L1 (R), ∥.∥L1 ) Ngược lại mâu thuẫn nảy sinh (??), từ fh (x) → với x ∈ R Tính tách (Lp (Ω), ∥.∥Lp ) Nhận xét Cho Ω ⊂ tập bị chặn, quan hệ bao hàm C0 (Ω) ⊂ L∞ (Ω) chặt Hơn nữa, với f ∈ C0 (Ω) ∥f ∥∞,Ω = ∥f ∥L∞ (Ω) (∗) Thật ∥f ∥L∞ (Ω) := inf{M > : |f (x)| ≤ M, x ∈ Ω} ≤ sup |f (x)| := ∥f ∥∞,Ω x∈Ω Để chứng minh bất đẳng thức ngược lại, ta quan sát, N ⊂ Ω tập không đáng kể với mối quan hệ đến L, Ω \ N ⊇ Ω Vì thế, theo tính liên tục f , tồn M > cho |f (x)| < M, x ∈ Ω ⇒ |f (x)| ≤ M ∀x ∈ Ω Đặc biệt, từ (∗), C0 (Ω) hóa đóng (L∞ (Ω), ∥.∥L∞ (Ω) ) Không gian đối ngẫu Lp (Ω) Định lý (Định lý biểu diễn Riesz) Cho ≤ p < ∞ ký hiệu   p < p < ∞ ′ p := p − (số mũ của) p ∞ p = ′ Khi ánh xạ T : Lp (Ω) → (Lp (Ω))′ , định nghĩa Z uf dx, ∀f ∈ Lp (Ω), ⟨T (u), f ⟩(Lp (Ω))×Lp (Ω) := Ω đẳng cấu metric có đặc trưng xác định ′ Lp (Ω) ≡ (Lp (Ω))′ ≤ p < ∞ Chứng minh Ta chia chứng minh thành ba bước Bước 1: Ta chứng minh T phép đẳng cự, nghĩa ′ ∥T (u)∥(Lp (Ω))′ = ∥u∥Lp′ (Ω) , ∀u ∈ Lp (Ω) (2) Theo bất đẳng thức Holder, suy bất đẳng thức ′ ∥T (u)∥(Lp (Ω))′ ≤ ∥u∥Lp′ (Ω) , ∀u ∈ Lp (Ω) (3) Ta bất thức ngược lại Đầu tiên, giả sử < p < ∞, điều có nghĩa < p′ < ∞ Nếu ∥u∥Lp′ (Ω) = 0, đó, u = hầu khắp nơi Ω bất đẳng thức rõ ràng Giả sử < ∥u∥Lp′ (Ω) < ∞, ta cần giả sử < |u(x)| < ∞ hầu khắp nơi x ∈ Ω Định nghĩa ′ fu (x) := |u(x)|p −2 u(x) hầu khắp nơi x ∈ Ω Quan sát fn ∈ Lp (Ω), từ ′ 1/p−1 |fu (x)|p = |u(x)|p hầu khắp nơi x ∈ Ω ⇒ ∥fu ∥Lp (Ω) = ∥u∥Lp′ (Ω) Vì Z ⟨T (u), fu ⟩(Lp (Ω))×Lp (Ω) = Ω ′ ′ u|u|p −2 udx = ∥u∥pLp′ (Ω) (4) Từ (??) (??), suy ′ ∥u∥pLp′ (Ω) = ⟨T (u), fu ⟩(Lp (Ω))′ ×Lp (Ω) ≤ ∥T (u)∥(Lp (Ω))′ ∥fu ∥Lp (Ω) 1/p−1 = ∥T (u)∥(Lp (Ω))′ ∥u∥Lp′ (Ω) Điều có nghĩa ∥T (u)∥(Lp (Ω))′ ≥ ∥u∥Lp′ (Ω) ′ ∀u ∈ Lp (Ω) (5) Vì (??) (??) cho ta (??) Cuối cùng, cho trường hợp p = 1, p′ = ∞, giả sử < M < ∥u(x)∥L∞ (Ω) Khi tập hợp EM := {x ∈ Ω : |u(x)| > M } ∈ M |EM | > Từ không gian đo (Ω, Mn ∩ Ω, Ln ) σ−hữu hạn, tồn tập F ∈ Mn ∩ Ω cho < |EM ∩ F | < ∞ Tập hợp fu (x) := sign(u(x))χEM ∩F (x) hầu khắp nơi x ∈ Ω |EM ∩ F | Khi Z ∥fu ∥L1 (Ω) = |fu (x)|dx = Ω ⟨T (u), fu ⟩(L1 (Ω))′ ×L1 (Ω) = |EM ∩ F | Z |u|dx ≥ M, ∀M ∈ (0, ∥u∥L∞ (Ω) ) (43b) EM ∩F Từ (??) (43b), suy M ≤ ⟨T (u), fu ⟩(L1 (Ω))′ ×L1 (Ω) ≤ ∥T (u)∥(L1 (Ω))′ ∥fu ∥L1 (Ω) = ∥T (u)∥(L1 (Ω))′ , ∀M ∈ (0, ∥u∥L∞ (Ω) ), Từ ∥T (u)∥(L1 (Ω))′ ≥ ∥u∥L∞ (Ω) , ∀u ∈ L∞ (Ω) (24b) Từ (??) (44b), đồng (??) p = Bước 2: Đầu tiên giả sử |Ω| < ∞ ta chứng minh T toàn ánh, ′ nghĩa ∀ϕ ∈ (Lp (Ω))′ , ∃u ∈ Lp (Ω) cho T (u) = ϕ ⇔ ⟨T (u), f ⟩(Lp (Ω))′ ×Lp (Ω) = ϕ(f ), ∀f ∈ Lp (Ω) Bởi |Ω| < ∞, χE ∈ Lp (Ω) với E ∈ M := Mn ∩ Ω, p ∈ [1, ∞) Định nghĩa tập hợp hàm ν : M → R ν(E) := ϕ(χE ), E ∈ M Chỉ ν σ -hữu hạn, độ đo có dấu; (6) ν ≪ Ln M (7) Thật |ν(E)| < ∞ với E ∈ M, ν σ -hữu hạn Giả sử (Eh )h ⊂ M dãy rời nhau, ta chưng minh ν(∪∞ h=1 Eh ) = ∞ X ν(Eh ) Tập hợp E := ∪∞ h=1 Eh Với số nguyên m h=1 21 Định nghĩa Cho G nhóm Ký hiệu C = {(x, y) ∈ G × G | xy = yx} Độ giao hoán G, ký hiệu Pr(G), định nghĩa sau Pr(G) = |C| |G|2 Mệnh đề 12 Nếu G nhóm khơng giao hốn Pr(G) ⩽ Biểu diễn ∆(R) tính chất Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) iđêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) ru−1 + ∈ U (R) u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆(R) nhóm với phép cộng R Hơn rs = r(s + 1) − r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) suy ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược Y Y lại hiển nhiên Y Y Y (5) Lấy ri ∈ ∆( Ri ) Khi ri + U ( Ri ) ⊆ U ( Ri ) Vì Y U( i∈I i∈IY Ri ) = i∈I i∈I U (Ri ) nên Y i∈I ri + Yi∈I i∈I Y i∈I i∈I U (Ri ) ⊆ i∈IY U (Ri ) hay (ri + i∈I 22 U (Ri )) ⊆ Y U (Ri ), suy ri +U (Ri ) ⊆ U (Ri ), ∀i ∈ I nên i∈I Y i∈I ri ∈ Y ∆(Ri ) i∈I Chiều ngược lại tương tự Cho e phần tử lũy đẳng vành R Khi phần tử − 2e khả nghịch R Từ Bổ đề ?? (2) ta suy hệ sau Hệ 11 Cho R vành (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý 10 Cho R vành có đơn vị T vành R sinh U (R) Khi (1) ∆(R) = J(T ) ∆(S) = ∆(R), với S vành tùy ý R thỏa mãn T ⊆ S ; (2) ∆(R) Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên phần tử T viết thành tổng hữu hạn phần tử khả nghịch R Do đó, theo Bổ đề ?? (2) suy ∆(T ) iđêan T Theo Bổ đề ?? (4) suy ∆(T ) = J(T ) Hơn ∆(T ) = ∆(R) nên ∆(R) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai phần tử khả nghịch Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆(R) Jacobson R theo Bổ đề ?? (2) ∆(R) đóng với phép nhân phần tử khả nghịch trái phải R Bây giờ, ta giả sử S Jacobson chứa R đóng với phép nhân phần tử khả nghịch Ta phải S ⊆ ∆(R) Thật vậy, s ∈ S u ∈ U (R), su ∈ S = J(S) Do su tựa khả 23 nghịch S nên + su ∈ U (R) Theo Bổ đề ?? (1) s ∈ ∆(R) hay S ⊆ ∆(R) Từ đặt trưng ∆(R) Định lý ?? (2) ta có hệ sau Hệ 12 Giả sử R vành mà phần tử biểu diễn thành tổng phần tử khả nghịch Khi ∆(R) = J(R) Định lý cổ điển Amitsur nói Jacobson F -đại số R trường F lũy linh, với điều kiện dimF R < |F | Áp dụng Định lý ?? (1) ta thu hệ sau Hệ 13 Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Cho R vành khơng thiết phải có đơn vị S vành R, ta ký hiệu Sˆ vành R sinh S ∪ {1} Mệnh đề 13 Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa mãn U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S); [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa mãn I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ?? ∆(R) [ ∩ U (R), r ∈ ∆(R) k ∈ Z Ta Lấy u = r + k · ∈ ∆(R) ¯ −1 = (u − k)u ¯ −1 = k¯ = k · ∈ U (R) Ta có u − k¯ = r ∈ ∆(R), − ku ¯ −1 = − (1 − ku ¯ −1 ) ∈ U (R), suy ru−1 ∈ ∆(R) theo Bổ đề ?? (2) Khi ku k¯ ∈ U (R) Vì ∆(R) đóng với phép nhân phần tử khả nghịch nên ta áp dụng phần chứng minh v = uk¯−1 = + rk¯−1 [ , nghĩa u−1 k¯ = s + ¯l, với s ∈ ∆(R) l ∈ Z Suy u−1 k¯ = v −1 ∈ ∆(R) [ , U (R) ∩ ∆(R) [ ⊆ U (∆(R)) [ sk¯−1 ∈ ∆(R), u−1 = sk¯−1 + k¯−1 ¯l ∈ ∆(R) [ ⊆ U (R) ∩ ∆(R) [ dễ thấy Chiều ngược lại U (∆(R)) ¯ = (3) Ta ký hiệu ¯ phép chiếu từ R lên R/I Lưu ý, I ⊆ J(R), U (R) U (R) 24 ¯ u ∈ U (R) Khi r¯ + u¯ ∈ U (R) ¯ có phần tử Lấy r¯ ∈ ∆(R) v ∈ U (R) j ∈ I thỏa mãn r + u = v + j Hơn v + j ∈ U (R), ¯ = U (R) nên chiều ngược lại ¯ = ∆(R) Vì U (R) I ⊆ J(R) Suy ∆(R) dễ thấy Áp dụng mệnh đề ta có hệ sau [ = ∆(R), nghĩa ∆ Hệ 14 Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng [ , ∆(R) ⊆ T Chứng minh ∆(R) Jacobson T = ∆(R) Vì ∆(R) chứa tất phần tử lũy linh nên T /∆(R) đẳng cấu với Z Zn := Z/nZ, với n > nhân tử bình phương Theo Mệnh đề ?? (3) Hệ ?? ta có ∆(T )/∆(R) = ∆(T /∆(R)) = J(T /∆(R)) = hay ∆(T ) = ∆(R) Từ Mệnh đề ?? (1), áp dụng cho S = Z(R) tâm R, ta có hệ sau Hệ 15 ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Ký hiệu ( R[[x]] = {a0 + a1 x + a2 x2 + · · · |ai ∈ R} = ∞ X ) xi |ai ∈ R i=0 Mỗi phần tử f ∈ R[[x]], f = ∞ X xi với x0 = gọi chuỗi lũy i=0 thừa hình thức biến x với hệ tử thuộc R Ta định nghĩa phép cộng ∞ ∞ X X i phép nhân, lấy f, g ∈ R[[x]], f = x , g = bi xi Ta định i=0 i=0 nghĩa f = g = bi với i = 0, 1, ! ∞ ∞ i X X X (ai + bi )xi , f g = f +g = i=0 ai−j bj i=0 xi j=0 Với phép tốn R[[x]] vành giao hốn có đơn vị 25 Cho vành R, ký hiệu Tn (R) tập tất ma trận tam giác cấp n vành R, Jn (R) iđêan Tn (R) bao gồm tất ma trận tam giác cấp n thực Dn (R) vành ma trận đường chéo cấp n Từ Mệnh đề ?? (3) ta suy trực tiếp hệ sau Hệ 16 Cho R vành tùy ý Khi đó, khẳng định sau (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ 17 Cho R vành Khi đó, ∆(R) = J(R) ∆(R/J(R)) = Một vành R có hạng ổn định a, x, b ∈ R thỏa mãn ax + b = 1, tồn y ∈ R cho a + by khả nghịch R Định lý sau vài lớp vành mà ∆(R) = J(R) Định lý 11 ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với tích vành ma trận thể (2) R vành nửa địa phương (3) R vành clean thỏa mãn ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có hạng ổn định (6) R = F G nhóm đại số trường F Chứng minh (1) Giả sử R đẳng cấu với tích vành ma trận thể Theo Hệ ?? ta cần ∆(R/J(R)) = Để làm điều này, ta giả sử J(R) = 0, nghĩa R tích vành ma trận thể Nếu R vành ma trận Mn (S), với S vành chứa đơn vị n ≥ Theo Định lý ??, phần tử R tổng ba phần tử khả nghịch, theo Hệ ?? ∆(R) = J(R) = Khi S thể rõ ràng ∆(S) = Do (1) suy trực tiếp từ Bổ đề ?? (5) 26 (2) Là trường hợp đặc biệt (1) (3) Giả sử R vành clean  1thỏa1 mãn ∈U (R) Nếu e ∈ R lũy đẳng − (1 − 2e) tổng hai phần tử khả − 2e ∈ U (R) e = 2 nghịch Điều có nghĩa phần tử R tổng ba phần tử khả nghịch Theo Hệ ?? ta suy ∆(R) = J(R) (4) Giả sử U (R) = 1+U (R) Giả sử R U J -vành Khi đó, r ∈ ∆(R) ta có r + U (R) ⊆ U (R), nghĩa r + + J(R) ⊆ + J(R) Suy r ∈ J(R) ∆(R) = J(R) (5) Giả sử R có hạng ổn định Lấy r ∈ ∆(R), ta r ∈ J(R) Với s ∈ R ta có Rr +R(1−rs) = R Vì R có hạng ổn định nên tồn x ∈ R cho r + x(1 − sr) ∈ U (R), suy x(1 − sr) ∈ r + U (R) ⊆ U (R), (1 − sr) khả nghịch hay r ∈ J(R) (6) Giả sử R = F G nhóm đại số trường F Khi đó, phần tử R tổng phần tử khả nghịch Theo Hệ ?? ta suy ∆(R) = J(R) Ta biết vành nửa địa phương có hạng ổn định 1, điều kiện (2) (5) tương đương Bổ đề Giả sử G nhóm nhóm R phép tốn cộng Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Lấy r ∈ R G nhóm cộng, rG ⊆ G (1 − r)G ⊆ G Định lý 12 Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R); (2) G Jacobson lớn đóng với phép nhân phần tử tựa khả nghịch R; (3) G nhóm lớn R phép cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R 27 Chứng minh Theo Định lý ?? (2) Bổ đề ?? ∆(R) Jacobson R đóng với phép nhân phần tử tựa khả nghịch Giả sử G nhóm cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Cụ thể, G Jacobson không chứa đơn vị R, theo Bổ đề ??, G đóng với phép nhân phần tử khả nghịch R Do theo Định lý ?? (2) ta G ⊆ ∆(R) So sánh không gian vector hữu hạn chiều không gian vector vô hạn chiều Chúng ta nhắc lại sơ qua điểm khác không gian vector hữu hạn chiều không gian vector vô hạn chiều từ cách nhìn đại số topo Định nghĩa (i) Cho E F hai khơng gian vector Ta nói E F đẳng cấu tuyến tính tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu topo tồn ánh xạ liên tục T : E → F ánh xạ tuyến tính − với ánh xạ ngược liên tục T −1 : F → E (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu metric tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F với ∥T (x)∥F = ∥x∥E với x ∈ E Ta nhớ lại khái niệm không gian đối ngẫu không gian vector định chuẩn Định nghĩa Cho (E, ∥.∥) không gian vector định chuẩn Không gian đối ngẫu E ′ E không gian tuyến tính định nghĩa bởi: E ′ := {f : E → R : f tuyến tính liên tục} E ′ trang bị chuẩn ∥f ∥E ′ := |f (x)| < +∞ x∈E\{0} ∥x∥ sup 28 Định lý 13 (E ′ , ∥.∥E ′ ) không gian Banach Chứng minh Ta chứng minh dãy Cauchy E ′ hội tụ Giả sử {fn } dãy Cauchy E ′ , tức ∥fm − fn ∥E ′ → m, n → ∞, với x ∈ E ta có |fm (x) − fn (x)| = |(fm − fn )(x)| tính tuyến tính, hay |fm (x) − fn (x)| ≤ ∥fm − fn ∥E ′ ∥x∥E → m, n → ∞, {fn } dãy Cauchy E ′ Ta suy fn (x) dãy Cauchy R, fn (x) hội tụ, nghĩa tồn f (x) cho f (x) = lim fn (x) n→∞ Ta cần chứng minh f (x) tuyến tính liên tục Tính tuyến tính hiển nhiên, ta cần chứng minh tính liên tục, hay ta chứng minh f (x) bị chặn |f (x)| = lim |fn (x)| ≤ lim ∥fn ∥E ′ ∥x∥E , n→∞ n→∞ Vì fn ∈ E ′ nên fn tuyến tinh bị chặn, tức tồn M > cho ∥fn ∥ ≤ M , từ ta suy |f (x)| ≤ lim M ∥x∥E = M ∥x∥E n→∞ Ta có điều phải chứng minh Lưu ý: Nếu f ∈ E ′ x ∈ E ta viết ⟨f, x⟩E ′ ×E thay cho f (x) ta gọi ⟨., ⟩E ′ ×E tích vơ hướng khơng gian đối ngẫu E, E ′ Ký hiệu chung không gian đối ngẫu thực E không gian Hilbert Tính chất ∆U lớp vành Một phần tử r ∈ R gọi ∆-clean r biểu diễn thành r = e + t e phần lũy đẳng R t ∈ ∆(R) Vành R 29 gọi ∆-clean phần tử R ∆-clean Chú ý, phẩn tử ∆-clean clean Mệnh đề 14 Các điều kiện sau tương đương vành R (1) R ∆U -vành; (2) Tất phần tử clean R ∆-clean Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Lấy r ∈ R clean, r = e + u Vì R ∆U -vành, ta có u = + a với a ∈ ∆(R) Lưu ý − 2e ∈ U (R) = + ∆(R), 2e ∈ ∆(R) Khi 2e + a ∈ ∆(R) r = e + + a = (1 − e) + (2e + a) biểu diễn ∆-clean r (2) ⇒ (1) Lấy u ∈ U (R) Khi u clean nên theo giả thiết u ∆-clean Giả sử u = e + a biểu diễn ∆-clean u với a ∈ ∆(R) e lũy đẳng Ta có = eu−1 + au−1 suy eu−1 = − au−1 khả nghịch R Vì e = Điều nghĩa u = + a ∈ + ∆(R) U (R) = + ∆(R) Định lý 14 Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Nếu a ∈ R thỏa mãn a − a2 ∈ ∆(R), tồn tử phẩn tử lũy đẳng e ∈ R cho a − e ∈ ∆(R); (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Chứng minh (1) ⇔ (3) ⇔ (4) suy từ Mệnh đề ?? (1) ⇒ (2) Giả sử R clean ∆U -vành Khi đó, a ∈ R a − e ∈ ∆(R), với e lũy linh Tiếp theo ta chứng minh a − a2 ∈ ∆(R) Theo Mệnh đề ??, giả sử a = e + j biểu diễn ∆-clean a Khi a − a2 = (j − j ) − (ej + je) Chú ý j − j ∈ ∆(R) 2e ∈ ∆(R) Bây ta chứng minh ej + je ∈ ∆(R) Thậy vậy, ta có [ej(1 − e)]2 = = [(1 − e)je]2 theo Mệnh đề ?? ta ej − eje = ej(1 − e) ∈ ∆(R) 30 je − eje = (1 − e)je ∈ ∆(R) Suy je − ej ∈ ∆(R) Vì ej + je = 2ej + (je − ej) ∈ ∆(R) (2) ⇒ (3) suy từ định nghĩa Rõ ràng Hệ suy từ Định lý ?? Nghĩa vành đơn vị thỏa mãn tính chất ∆(R) = Cho vành R, phần tử a ∈ R gọi phần tử quy mạnh tồn x ∈ R thỏa mãn a = a2 x Một vành mà phần tử phần tử quy mạnh gọi vành quy mạnh Định lý 15 Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành quy; (2) R ∆U -vành quy mạnh; (3) R ∆U -vành quy đơn vị; (4) R thỏa mãn tính chất x2 = x với x ∈ R (R vành Boolean) Chứng minh (1) ⇒ (2) Từ R quy, iđêan phải khác không chứa phần tử lũy đẳng khác không Ta R vành rút gọn R aben (nghĩa là, phần tử lũy đẳng R tâm) Giả sử R vành rút gọn, tồn phần tử khác không a ∈ R thỏa mãn a2 = Theo Định lý ??, có phần tử lũy đẳng e ∈ RaR thỏa mãn eRe ∼ = M2 (T ), T vành khơng tầm thường Theo Mệnh đề ?? M2 (T ) ∆U -vành, điều mâu thuẫn Định lý ?? (2) ⇒ (3) Hiển nhiên (3) ⇒ (4) Cho x ∈ R Khi x = ue u ∈ U (R) e = e ∈ R Do R ∆U -vành, nên có u = hay y x = e, x lũy đẳng Chúng ta kết luận R vành Boolean (4) ⇒ (1) Hiển nhiên 31 Một vành R gọi nửa quy R/J(R) quy phần tử lũy đẳng nâng lên modulo J(R) Vành R gọi vành biến đổi phần tử a ∈ R, tồn e2 = e ∈ aR thỏa mãn − e ∈ (1 − a)R Hoàn toàn tương tự, có kết sau: Định lý 16 Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành nửa quy; (2) R ∆U -vành biến đổi; (3) R/J(R) vành Boolean Hệ 18 Cho R ∆U -vành Khi đó, điều kiện sau tương đương (1) R vành nửa quy; (2) R vành biến đổi; (3) R vành clean Không gian hữu hạn chiều Định nghĩa (i) Một không gian vector E trường số thực gọi hữu hạn chiều bao gồm hữu hạn vector độc lập tuyến tính (ii) Số lớn vector độc lập tuyến tính khơng gian vector hữu hạn chiều E gọi chiều ký hiệu dimR E Hệ B ⊂ E sinh dimR E vector độc lập tuyến tính gọi sở Định lý 17 Giả sử E không gian vector hữu hạn chiều dimR E = n (i) Nếu B ⊂ E sở, B sinh E , cụ thể spanR B = E (ii) E Rn đẳng cấu tuyến tính 32 (iii) Giả sử ∥.∥1 ∥.∥2 hai chuẩn E Khi (E, ∥.∥1 ) (E, ∥.∥2 ) đẳng cấu topo (iv) Giả sử ∥.∥ chuẩn E Khi (E, ∥.∥) (E ′ , ∥.∥E ′ ) đẳng cấu topo Theo tập trước, không gian định chuẩn hữu hạn chiều (E, ∥.∥) đẳng cấu topo với không gian Hilbert Rn Đây đặc trưng mạnh, khơng cịn cho khơng gian định chuẩn vơ hạn chiều Khơng gian hàm p-khả tích Lp (Ω) Ta nhớ lại không gian hàm p-khả tích độ đo Lebesgue n chiều Định nghĩa Cho A ⊂ Rn tập đo Lebesgue p ∈ [1, ∞], Lp (A) := {f : A → R : f đo Lebesgue ∥f ∥Lp < +∞} ∥f ∥Lp Z 1/p   p |f (x)| dx = ∥f ∥Lp (A) := A   ≤ p ≤ ∞ inf{M > : |f (x)| ≤ M, x ∈ A} p = ∞ Số ∥f ∥Lp gọi chuẩn Lp f A Định lý 18 (Fisher - Riesz) (Lp (A), ∥.∥Lp ) không gian Banach ≤ p ≤ ∞ Hơn L2 (A) khơng gian Hilbert với tích vơ hướng Z (f, g)L2 := f g dx f, g ∈ L2 (A) A Theo kết định lý Riesz - Fisher ta thu kết hữu ích Định lý 19 Cho Ω ⊂ Rn tập mở, (fh )h ⊂ Lp (Ω) f ∈ Lp (Ω) với ≤ p ≤ ∞ Giả sử lim ∥fh − f ∥Lp (Ω) = h→∞ Khi đó, tồn dãy (fhk )k hàm g ∈ Lp (Ω) thỏa mãn 33 (i) fhk (x) → f (x) hầu khắp nơi x ∈ Ω (ii) |fhk (x)| ≤ g(x) hầu khắp nơi x ∈ Ω, ∀k Nhận xét Nó khơng cịn giữ ý nghĩa (MC) ⇒ fh (x) → f (x) hầu khắp nơi x ∈ Ω Nhận xét Chú ý C0 ⊂ Lp (Ω) với p ∈ [1, ∞], với Ω ⊂ Rn tập mở bị chặn, khơng quan hệ bao hàm khơng giữ giữ quan hệ bao hàm C0c (Ω) ⊂ Lp (Ω) với p ∈ [1, ∞] tập mở Ω, C0c (Ω) := {f ∈ C0 (Ω) : spt(f ) compact chứa Ω} spt(f ) := Bao đóng{x ∈ Ω : f (x) ̸= 0} Hơn nhớ lại C0 (Ω, ∥.∥L2 ) khơng gian tuyến tính định chuẩn, khơng phải khơng gian Banach Tính compact (Lp (Ω), ∥.∥Lp ) Trong mục thảo luận kết compact không gian Lp Chúng ta nêu kết không chứng minh Cho f : Rn → R v ∈ Rn , ta định nghĩa τv f : Rn → R hàm v -dịch chuyển f định nghĩa (τv f )(x) := f (x + v) Định lý 20 (M.Riesz - Fréchét - Kolmogorov) Cho F tập bị chặn (Lp (Rn ), ∥.∥Lp ) với ≤ p < ∞ Giả sử lim ∥τv f − f ∥Lp = v→0 với f ∈ F , nghĩa ∀ϵ > 0, ∃δ(ϵ) > : ∥τv f − f ∥Lp < ϵ, ∀v ∈ Rn với |v| < δ, ∀f ∈ F (N EF ) Khi F|Ω := {f |Ω : f ∈ F} compact tương đối (Lp (Ω), ∥.∥Lp ), nghĩa bao đóng compact (Lp (Ω), ∥.∥Lp ), với tập mở Ω ⊂ Rn với độ đo Lebesgue hữu hạn Từ định lý ?? ta suy điều kiện compact (Lp (Ω), ∥.∥Lp ) 34 Nếu f : Ω → R, ta ký hiệu fe : Rn → R hàm định nghĩa ( f (x) x ∈ Ω fe(x) := x ∈ /Ω Hệ 19 Cho Ω ⊂ Rn tập mở với độ đo hữu hạn, cho F ⊂ Lp (Ω) cho Fe := {fe : f ∈ F} Giả sử (i) F bị chặn (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞; (ii) lim ∥τv f − f ∥Lp = với f ∈ F , nghĩa Fe thỏa mãn (ENF ) v→0 Khi F compact tương đối (Lp (Ω), ∥.∥Lp ) Chứng minh Từ định lý ??, Fe tập compact tương đối Lưu ý Fe compact dãy tương đối (Lp (Rn ), ∥.∥Lp ) F compact dãy tương đối (Lp (Ω), ∥.∥Lp ) Do đặc tính tập compact khơng gian metric (Định lý ??) có điều phải chứng minh Cuối cùng, nhớ lại đặc tính compact (Lp (Rn ), ∥.∥Lp ) Định lý 21 Cho F ⊂ Lp (Rn ) với ≤ p < ∞ Khi F compact tương đối (Lp (Rn ), ∥.∥Lp ) (i) F bị chặn (Lp (Rn ), ∥.∥Lp ); (ii) với ϵ > 0, tồn rϵ > thỏa mãn ∥f ∥Lp (Rn \B(0,rϵ )) < ϵ ∀f ∈ F; (iii) lim ∥τv f − f ∥Lp = f ∈ F v→∞ Nhận xét (i) Giả thiết (ENF ) cần thiết định lý ?? Thật vậy, xét họ F := {fh : h ∈ N} fh : R → R định nghĩa   ≤ x ≤ h fh (x) := h 0 ngược lại 35 Ω := (0, 1) Khi dễ thấy ∥f ∥L1 R = với h ∈ N F|Ω không compact tương đối (L1 (Ω), ∥.∥L1 ), khơng có dãy (fh )h hội tụ L1 (Ω) Mặt khác, v > 0, với h > 1/v Z Z v ∥τv fh − fh ∥L1 (R) ≥ fh (x + v) dx = fh (x) = −∞ Do đó, (ENF ) khơng cịn cho F (ii) Nếu Ω khơng có độ đo hữu hạn, kết định lý ?? khơng cịn Thật vậy, xét họ F := {fh : h ∈ N} fh : R → R định nghĩa fh (x) := f (x + h) f ∈ Lip(R) với spt(f ) = [−a, a], a > 0, f không triệt tiêu Khi ∥f ∥L1 (R) = ∥f ∥L1 (R) > ∀h (20) Hơn F thỏa mãn (ENF ), |τv f − f (x)| = |f (x + v)f (x)| ≤ L|v|X [−a−1,a+1] (x) ∀x ∈ R, v ∈ [−1, 1] ∥τc fh − fh ∥L1 (R) = ∥τv f − f ∥L1 (R) ∀h L := Lip(f ) Cho Ω := R quan sát F = F|Ω không compact tương đối (L1 (R), ∥.∥L1 ) Ngược lại mâu thuẫn nảy sinh (??), từ fh (x) → với x ∈ R Tính tách (Lp (Ω), ∥.∥Lp ) Nhận xét 10 Cho Ω ⊂ tập bị chặn, quan hệ bao hàm C0 (Ω) ⊂ L∞ (Ω) chặt Hơn nữa, với f ∈ C0 (Ω) ∥f ∥∞,Ω = ∥f ∥L∞ (Ω) (∗) Thật ∥f ∥L∞ (Ω) := inf{M > : |f (x)| ≤ M, x ∈ Ω} ≤ sup |f (x)| := ∥f ∥∞,Ω x∈Ω Để chứng minh bất đẳng thức ngược lại, ta quan sát, N ⊂ Ω tập không đáng kể với mối quan hệ đến L, Ω \ N ⊇ Ω

Ngày đăng: 03/07/2023, 08:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN