Phương trình sóng phi tuyến tính chứa số hạng nhớt phi tuyến

117 1 0
Phương trình sóng phi tuyến tính chứa số hạng nhớt phi tuyến

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG TRÌNH SĨNG PHI TUYẾN TÍNH CHỨA SỐ HẠNG NHỚT PHI TUYẾN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Trong trình nghiên cứu, nhà khoa học nhiều phải giải tốn mà nghiệm chúng khơng ổn định theo kiện ban đầu, tức thay đổi nhỏ liệu dẫn đến sai khác lớn kết Những toán gọi đặt không chỉnh (ill-posed problem) Trong thực tế, sai số đầu vào tránh khỏi, việc chỉnh hóa tốn, làm cho nghiệm xấp xỉ gần với nghiệm sai số liệu nhỏ, công việc quan trọng 856 2 Mở rộng Dorroh mở rộng tail ring ∆U -vành Mệnh đề Cho R vành, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành (2) R ∆U -vành Mệnh đề R[D, C] ∆U -vành D C ∆U -vành 2.1 Các nhóm vành Định lý Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành agumentation iđêan ∇(RG) ∆U -vành Bổ đề Nếu G locally finite 2-group R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Định lý Cho R ∆U -vành G locally finite 2-group Nếu ∆(R) lũy linh, RG ∆U -vành Hệ Cho R right (or left) perfect ring G locally finite 2-group Khi đó, R ∆U -vành RG ∆U -vành Nhóm nhị diện Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) =  n+k   n n lẻ, n chẵn k ∤ , 2n   n + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) =  n+1   n lẻ, 2n n   + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) =  n+i+2     4n         n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề 22 ta có |Rk | = Do k  Rk = ⟨r ⟩ = n n = (n, k) k  n r 0⩽l ⩽ −1 k kl Khi X X |CDn (x)| = |CDn (1)| + |CDn (rkl )| 1⩽l⩽ nk −1 x∈Rk Ta xét hai trường hợp n sau Trường hợp 1: n lẻ Theo Mệnh đề 23 ta có X 1⩽l⩽ nk −1 kl |CDn (r )| = n k  − |R1 | Từ suy X |CDn (x)| = |Dn | + n k x∈Rk  − |R1 | = 2n + n k  −1 n= n(n + k) k Áp dụng Mệnh đề 17 ta có Pr(Rk , Dn ) = X n+k n+k |CDn (x)| = n = n |Rk ||Dn | k 2n 2n x∈Rk k Trường hợp 2: n chẵn Ta xét hai trường hợp k n Trường hợp 2a: k ∤ Khi đó, theo Mệnh đề 23 ta có X kl |CDn (r )| = n k 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + x∈Rk n k  − |R1 |  − |R1 | = 2n + n k  −1 n= n(n + k) k Áp dụng Mệnh đề 17, ta có X n+k n+k n |CDn (x)| = n = |Rk ||Dn | k 2n 2n x∈Rk k n Trường hợp 2b: k | Khi đó, theo Mệnh đề 23 ta có n  X X ! ! m ∞ X X = ϕ χ E − χEh = ϕ χEh

Ngày đăng: 05/07/2023, 21:37

Tài liệu cùng người dùng

Tài liệu liên quan