Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 96 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
96
Dung lượng
559,17 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BẤT ĐẲNG THỨC TÍCH PHÂN THUỘC LOẠI OSTROWSKI CHO HÀM KHẢ VI CẤP HAI LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Bài toán (1) Calderon xem xét lần vào năm 1980 tính giải cho nghiệm toán Sylvester Uhlman chứng minh không gian rộng với số chiều từ ba trở lên vào năm 1987 Sau đó, có số kết mở rộng khác tính nghiệm chứng minh với biên thuộc C 1,1 hàm C 1,1 () Păavăarinta v cỏc cng s ó chứng minh tính nghiệm với hệ số dẫn điện Lipschitz 347 2 Một số kiến thức nhóm Một nhóm (G, ·) tập hợp G ̸= ∅ trang bị phép tốn hai ngơi · thỏa mãn điều kiện sau đây: (i) a · (b · c) = (a · b) · c với a, b, c ∈ G, (ii) Tồn phần tử e ∈ G cho a · e = a = e · a với a ∈ G, (iii) Với a ∈ G tồn phần tử a′ ∈ G cho a · a′ = a′ · a = e Để đơn giản, ta ký hiệu ab thay cho a · b Phần tử e xác định (ii) nhất, gọi phần tử đơn vị nhóm G, thường ký hiệu Với a ∈ G, phần tử a′ xác định (iii) nhất, gọi phần tử nghịch đảo a, ký hiệu a−1 Một nhóm G gọi giao hoán (hay abel ) ab = ba với a, b ∈ G Nếu nhóm G có hữu hạn phần tử ta gọi G nhóm hữu hạn, gọi số phần tử G cấp nhóm G, ký hiệu |G| Cho G nhóm, H tập G Ta gọi H nhóm G, ký hiệu H ⩽ G, điều kiện sau thỏa mãn: (i) Phép toán G hạn chế lên H cảm sinh phép toán H , (ii) H nhóm với phép tốn cảm sinh Cho G nhóm, H tập G ta ký hiệu ⟨S⟩ nhóm bé G chứa S , gọi S tập sinh ⟨S⟩ Đặc biệt, nhóm có tập sinh gồm phần tử gọi nhóm xiclíc Mệnh đề (Định lý Lagrange) Cho G nhóm hữu hạn, H nhóm G Khi |H| ước |G| Với G nhóm hữu hạn, H ⩽ G, ta ký hiệu |G : H| = |G| : |H|, gọi số nhóm H G Mệnh đề Cho G nhóm, A, B hai nhóm hữu hạn G Ký hiệu AB = {ab | a ∈ A, b ∈ B} Khi |AB| = |A||B| |A ∩ B| Cho G nhóm, a phần tử G Với u phần tử G, liên hợp u a, ký hiệu ua , định nghĩa ua = a−1 ua Với H nhóm G, ta gọi H nhóm chuẩn tắc G, ký hiệu H ◁ G, ∈ H với a ∈ G, h ∈ H Cho N nhóm chuẩn tắc G Ký hiệu G/N = {aN | a ∈ G} Khi G/N nhóm với phép tốn xác định sau Với a, b ∈ G (aN )(bN ) = abN Nhóm G/N gọi nhóm thương G N Với S tập G, tâm hóa S G, ký hiệu CG (S), định nghĩa CG (S) = {a ∈ G | ua = u với u ∈ S} Trong trường hợp S = {x}, ta dùng ký hiệu CG (x) thay cho CG (S) Tâm nhóm G, ký hiệu Z(G), định nghĩa Z(G) = CG (G) Mệnh đề Cho G nhóm khơng giao hốn Khi đó, nhóm thương G/Z(G) khơng nhóm xiclíc Cho G nhóm Với x y hai phần tử G, giao hoán tử x y , ký hiệu [x, y], định nghĩa [x, y] = x−1 y −1 xy Nhóm giao hốn tử G, ký hiệu G′ , định nghĩa nhóm sinh tập tất giao hoán tử {[x, y] | x, y ∈ G} Cho hai nhóm G H Một ánh xạ f : G → H gọi đồng cấu nhóm với a, b ∈ G f (ab) = f (a)f (b) Nếu đồng cấu f đơn ánh (tương ứng, tốn ánh, song ánh) ta gọi f đơn cấu (tương ứng, toàn cấu, đẳng cấu) Ta ký hiệu Aut(G) nhóm tất tự đẳng cấu G Cho N H hai nhóm bất kỳ, cho θ : H → Aut(N ) đồng cấu nhóm Khi đó, tập hợp G = {(x, h) | x ∈ N, h ∈ H} nhóm với phép tốn xác định sau Với (x1 , h1 ), (x2 , h2 ) ∈ G, (x1 , h1 )(x2 , h2 ) = (x1 θ(h1 )(x2 ), h1 h2 ) Nhóm G xác định gọi tích nửa trực tiếp N H ứng với tác động θ, ký hiệu G = N ×θ H Trong trường hợp đặc biệt θ đồng cấu tầm thường tích nửa trực tiếp tích trực tiếp Sau số kiến thức p-nhóm nhóm abel hữu hạn Cho p số nguyên tố Một nhóm G gọi p-nhóm |G| mơt lũy thừa p Ta thấy nhóm con, nhóm thương p-nhóm p-nhóm Mệnh đề Cho p số nguyên tố Khi (i) Mọi nhóm có cấp p nhóm xiclíc (ii) Mọi nhóm có cấp p2 nhóm abel Mệnh đề Mọi nhóm abel hữu hạn G biểu diễn cách thành tích trực tiếp nhóm xiclíc G∼ = Cn1 × Cn2 × · · · × Cnk ni ⩾ 2, i = 1, 2, k , n1 | n2 | · · · | nk Sau số kiến thức nhóm đối xứng nhóm thay phiên Cho X tập hợp Một song ánh từ tập X đến gọi phép tập X Ký hiệu S(X) tập tất phép tập X Khi S(X) nhóm với phép tốn hợp thành ánh xạ Ta gọi S(X) nhóm đối xứng tập X Ta dùng ký hiệu Sn để nhóm đối xứng tập X = {1, 2, , n} gọi Sn nhóm đối xứng bậc n Định lý Mọi phép π ∈ Sn với n ⩾ phân tích thành tích xích rời Phân tích không kể đến thứ tự nhân tử Cho π ∈ Sn với n ⩾ Khi đó, theo Định lý ??, ta có phân tích π thành tích xích rời π = (a11 a12 · · · a1k1 )(a21 a22 · · · a2k2 ) · · · (as1 as2 · · · asks ) ta giả thiết k1 ⩾ k2 ⩾ · · · ⩾ ks Ta gọi (k1 , k2 , , ks ) kiểu phép π Mệnh đề Hai phép nhóm đối xứng Sn với n ⩾ liên hợp với chúng có kiểu Cho σ ∈ Sn với n ⩾ Ta nói cặp (σ(i), σ(j)) nghịch σ i < j σ(i) > σ(j) Dấu phép σ, ký hiệu sign(σ), xác định công thức sign(σ) = (−1)t t số nghịch σ Nếu sign(σ) = ta gọi σ phép chẵn, sign(σ) = −1 ta gọi σ phép lẻ Mệnh đề Cho σ, τ ∈ Sn với n ⩾ Khi (i) sign(στ ) = sign(σ)sign(τ ) (ii) Nếu σ xích độ dài k sign(σ) = (−1)k+1 Với n ⩾ ta ký hiệu An tập phép chẵn bậc n Khi An nhóm chuẩn tắc số Sn Ta gọi An nhóm thay phiên bậc n Cuối mục kết độ giao hốn nhóm Định nghĩa Cho G nhóm Ký hiệu C = {(x, y) ∈ G × G | xy = yx} Độ giao hoán G, ký hiệu Pr(G), định nghĩa sau Pr(G) = |C| |G|2 Mệnh đề Nếu G nhóm khơng giao hốn Pr(G) ⩽ Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề ?? ta có kết sau Mệnh đề Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề 10 Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề ??, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề 21 Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho Pr(A2 , S2 ) = nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 2c(7) = 7! 315 KHƠNG GIAN CÁC HÀM KHẢ TÍCH Định lý Cho Ω ⊂ Rn tập mở Khi (Lp (Ω), ∥.∥Lp ) tách ≤ p < ∞ không tách p = ∞ Ta cần hai kết để chứng minh định lý ??: trước kết topo (Urysohn’s Lemma) sau quan hệ xấp xỉ không gian hàm liên tục Lp Định nghĩa Cho (X, τ ) không gian topo Khi C0c (X) := {f : X → R liên tục spt(f ) compact (X, d)} spt(f ) := Bao đóng{x ∈ X : f (x) ̸= 0} Bổ đề (Bổ đề Urysohn) Cho X compact địa phương không gian metric, cho K ⊂ X V ⊂ X , K compact V mở thỏa mãn K ⊂ V Khi đó, tồn hàm φ ∈ C0c (X) thỏa mãn ≤ φ ≤ 1, φ ≡ K spt(φ) ⊂ V Định lý (Xấp xỉ Lp hàm liên tục) Cho Ω ⊂ Rn tập mở Khi C0c (Ω) trù mật (Lp (Ω), ∥.∥Lp ), biết ≤ p < ∞ Chứng minh định lý ?? dựa hai kết tảng xấp xỉ hàm đo được, ta cần nhớ lại Định lý (Xấp xỉ hàm đơn giản) Cho (X, M) không gian đo cho f : X → [0, +∞] hàm đo Khi tồn dãy hàm đơn giản đo sh : X → [0, +∞], (h = 1, 2, ) thỏa mãn tính chất (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z ∥f − sh ∥L1 (X,µ) := |f − sh |dµ → X Định lý (Lusin - Dạng khơng gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X 50 17.2 Một vài tính chất đại số ∆U -vành Nhớ lại rằng, vành R gọi vành 2-primal nguyên tố N (R) Mệnh đề 21 Cho R vành 2-primal Nếu vành đa thức R[x] ∆U vành, R ∆U -vành Chứng minh R vành 2-primal, theo [10, Mệnh đề 19], ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề 22 Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành Chứng minh (1) Điều suy từ Mệnh đề 2.4(5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]), R ∼ = R[[x]]/(x), kết suy từ Mệnh đề 2.4(5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu thỏa ϵi = idR (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) 51 (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆((R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = + ∆(R), R ∆U -vành Suy y − = i(x) + v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Mệnh đề 23 Cho R vành, M monoid RM monoid ring Nếu RM ∆U -vành, R ∆U -vành Mệnh đề 24 Cho R vành giao hốn có đơn gị Vành đa thức R[x] R ∆U R ∆U 17.3 Tính chất ∆U lớp vành Mệnh đề 25 Các điều kiện sau tương đương vành R (1) R ∆U -vành (2) Tất clean elements R ∆-clean Định lý 27 Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Với a ∈ R, ta có a − a2 ∈ ∆(R) a − e ∈ ∆(R) e lũy đẳng, e ∈ R; (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean 52 Bổ đề Nếu R vành unit-regular ∆(R) = Định lý 28 Cho R vành, điều sau tương đương (1) R regular ∆U -vành (2) R strongly regular ∆U -vành (3) R unit-regular ∆U -vành (4) R có identity x2 = x (R vành Boolean) Định lý 29 Cho R vành, điều sau tương đương (1) R semiregular ∆U -vành (2) R exchange ∆U -vành (3) R/J(R) vành Boolean Hệ Cho R ∆U -vành, điều sau tương đương (1) R semiregular ring (2) R exchange ring (3) R clean ring 18 Độ giao hoán tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hốn tương đối mở rộng nhóm Mệnh đề 26 Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề ??, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |CH1 (x)| |C (x)| |C (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| 53 Theo Mệnh đề ?? ta có Pr(H1 , H2 ) = X X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề ?? ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 Vậy ta có điều phải chứng minh Mệnh đề 27 Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề ?? ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN C (x)N Do yN ∈ CH/N (xN ) Từ suy H ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N 54 Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ CH (x)N N Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề ?? Chứng minh Từ Mệnh đề ?? ta có X X |CH (y)| X |H||G| Pr(H, G) = |CH (y)| = y∈G = S∈G/N y∈S X X S∈G/N y∈S = |CN (y)| |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | S∈G/N y∈S X X CH (y)N N |CN (y)| S∈G/N y∈S Áp dụng Bổ đề ?? từ suy X X X X |CH/N (S)| |CN (y)| |H||G| Pr(H, G) ⩽ |CH/N (yN )||CN (y)| = S∈G/N y∈S = X S∈G/N |CH/N (S)| S∈G/N X x∈N |CS (x)| = X |CH/N (S)| S∈G/N y∈S X |S ∩ CG (x)| x∈N Nếu S ∩ CG (x) ̸= ∅ tồn x0 ∈ S ∩ CG (x) S = N x0 Khi ta có S ∩ CG (x) = N x0 ∩ CG (x)x0 = (N ∩ CG (x))x0 = CN (x)x0 Từ suy |S ∩ CG (x)| = |CN (x)x0 | = |CN (x)| 55 Nếu S ∩ CG (x) = ∅ rõ ràng = |S ∩ CG (x)| < |CN (x)| Do trường hợp ta có |S ∩ CG (x)| ⩽ |CN (x)| Từ suy X X X X |H||G| Pr(H, G) ⩽ |CH/N (S)| |S ∩ CG (x)| ⩽ |CH/N (S)| |CN (x)| x∈N S∈G/N S∈G/N x∈N = |H/N ||G/N | Pr(H/N, G/N )|N |2 Pr(N ) = |H||G| Pr(H/N, G/N ) Pr(N ) Do Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Cuối cùng, giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Khi đó, theo Bổ đề ?? ta có CH (y)N = CH/N (yN ) với y ∈ G N Theo lập luận ta có |H||G| Pr(H, G) = X |CH/N (S)| S∈G/N X |S ∩ CG (x)| x∈N Vì N ◁ G [N, G] ⩽ N Do từ giả thiết suy [N, G] = N ∩ [N, G] ⩽ N ∩ [H, G] = 1, hay N ⩽ Z(G) Từ suy CG (x) ∩ S = G ∩ S ̸= ∅ với x ∈ N với S ∈ G/N Do |S ∩ CG (x)| = |CN (x)| với x ∈ N Từ suy xảy dấu đẳng thức Trong trường hợp đặc biệt, tích trực tiếp ta có kết sau Mệnh đề 28 Cho N H hai nhóm, N1 H1 tương ứng nhóm N H Khi Pr(N1 × H1 , N × H) = Pr(N1 , N ) Pr(H1 , H) 56 Chứng minh Giả sử x = (x1 , x2 ) ∈ N1 × H1 Khi CN ×H (x) = {(a1 , a2 ) ∈ N × H | (x1 , x2 )(a1 , a2 ) = (a1 , a2 )(x1 , x2 )} = {(a1 , a2 ) ∈ N × H | (x1 a1 , x2 a2 ) = (a1 x1 , a2 x2 )} Do |CN ×H (x)| = |CN (x1 )||CH (x2 )| Từ suy X X |CN ×H (x)| = x∈N1 ×H1 X |CN (x1 )| x1 ∈N1 |CH (x2 )| x2 ∈H1 Áp dụng Mệnh đề ?? ta có Pr(N1 × H1 , N × H) = |N1 × H1 ||N × H| = |N1 ||H1 ||N ||H| = |N1 ||N | X X |CN ×H (x)| x∈N1 ×H1 X |CN (x1 )| x1 ∈N1 |CN (x1 )| x1 ∈N1 X |CH (x2 )| x2 ∈H1 X |CH (x2 )| |H1 ||H| x2 ∈H1 = Pr(N1 , N ) Pr(H1 , H) Vây ta có điều phải chứng minh Đặc biệt, ta có kết sau Hệ Cho H N hai nhóm Khi Pr(H, N × H) = Pr(H) Đối với tích nửa trực tiếp vấn đề tính độ giao hốn tương đối trở nên phức tạp nhiều Trong phần lại mục ta trường hợp đặc biệt Mệnh đề sau cho ta cơng thức tính độ giao hốn tương đối nhóm abel với tích nửa trực tiếp nhóm xiclíc cấp Mệnh đề 29 Cho A nhóm giao hốn, α tự đẳng cấu A cho α2 = idA C2 = ⟨u⟩ nhóm xiclíc cấp với u phần