Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 88 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
88
Dung lượng
546,58 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT VÀI CÁCH TÍNH BẬC TƠPƠ VÀ ỨNG DỤNG VÀO BÀI TỐN PHÂN NHÁNH TỒN CỤC CỦA BẤT ĐẲNG THỨC BIẾN PHÂN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Việc nghiên cứu chuỗi Fourier bắt nguồn từ toán Vật lý cụ thể toán liên quan đến dao động toán truyền nhiệt J Fourier người nghiên cứu chuỗi lượng giác theo cơng trình trước Euler, D’Alembert Daniel Bernoulli J Fourier áp dụng chuỗi Fourier để giải phương trình truyền nhiệt cơng trình ông công bố vào năm 1807 1811 354 2 ĐỊNH LÍ FUBINI Định lý (G.Fubini - L.Tonelli) Cho F : R2n → [0, ∞] hàm đo (đối với M2n ) Khi (i) Hàm Rn ∋ y 7→ F (x, y) đo (đối với Mn ) với Ln hầu khắp nơi x ∈ Rn (ii) Hàm Z n R ∋ x 7→ F (x, y)dy Rn đo (đối với Mn ) (ii) F (x, y)dy dx F (x, y)dxdy = R2n Rn Z Z Z Rn Z Z F (x, y)dx dy = Rn Rn Bổ đề Cho f ∈ C0 (Rn ) Khi ϱ ∗ f → f tập compact Rn Chứng minh Cho K ⊂ Rn tập compact cho K ′ := K + B(0, 1) Theo tính liên tục f tập compact K ′ , ∀ϵ > tồn < δ = δ(ϵ, K ′ ) < thỏa mãn |f (x − y) − f (x)| ≤ ϵ, ∀x ∈ K, ∀y ∈ B(0, δ) (1) Mặt khác, h ∈ N thỏa 1/h < δ x ∈ K , theo (54), Z |(f ∗ ϱh )(x) − f (x)| = n ZR Z f (x)ϱ(y)dy = f (x − y)ϱh (y)dy − n Rn ZR =