1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một vài cách tính bậc tôpô và ứng dụng vào bài toán phân nhánh toàn cục

103 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 103
Dung lượng 567,92 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT VÀI CÁCH TÍNH BẬC TƠPƠ VÀ ỨNG DỤNG VÀO BÀI TỐN PHÂN NHÁNH TỒN CỤC CỦA BẤT ĐẲNG THỨC BIẾN PHÂN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Trong nhiều thập kỉ qua, lí thuyết tốn tử đơn điệu nghiên cứu theo nhiều khía cạnh khác có ảnh hưởng định đến ngành khác tốn học, chẳng hạn phương trình vi phân, phương trình đạo hàm riêng, phương trình tích phân, lí thuyết xác suất, lí thuyết tối ưu lĩnh vực khác khoa học kinh tế, kỹ thuật, khoa học quản lí khoa học ứng dụng khác Việc tìm hiểu lí thuyết tốn tử đơn điệu có nhiều điều thú vị, xét ý nghĩa khoa học thực tiễn 137 2 Tính chất ∆U lớp vành Một phần tử r ∈ R gọi ∆-clean r biểu diễn thành r = e + t e phần lũy đẳng R t ∈ ∆(R) Vành R gọi ∆-clean phần tử R ∆-clean Chú ý, phẩn tử ∆-clean clean Mệnh đề Các điều kiện sau tương đương vành R (1) R ∆U -vành; (2) Tất phần tử clean R ∆-clean Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Lấy r ∈ R clean, r = e + u Vì R ∆U -vành, ta có u = + a với a ∈ ∆(R) Lưu ý − 2e ∈ U (R) = + ∆(R), 2e ∈ ∆(R) Khi 2e + a ∈ ∆(R) r = e + + a = (1 − e) + (2e + a) biểu diễn ∆-clean r (2) ⇒ (1) Lấy u ∈ U (R) Khi u clean nên theo giả thiết u ∆-clean Giả sử u = e + a biểu diễn ∆-clean u với a ∈ ∆(R) e lũy đẳng Ta có = eu−1 + au−1 suy eu−1 = − au−1 khả nghịch R Vì e = Điều nghĩa u = + a ∈ + ∆(R) U (R) = + ∆(R) Định lý Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Nếu a ∈ R thỏa mãn a − a2 ∈ ∆(R), tồn tử phẩn tử lũy đẳng e ∈ R cho a − e ∈ ∆(R); (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Chứng minh (1) ⇔ (3) ⇔ (4) suy từ Mệnh đề ?? (1) ⇒ (2) Giả sử R clean ∆U -vành Khi đó, a ∈ R a − e ∈ ∆(R), với e lũy linh Tiếp theo ta chứng minh a − a2 ∈ ∆(R) Theo Mệnh đề ??, giả sử a = e + j biểu diễn ∆-clean a Khi a − a2 = (j − j ) − (ej + je) Chú ý j − j ∈ ∆(R) 2e ∈ ∆(R) Bây ta chứng minh ej + je ∈ ∆(R) Thậy vậy, ta có [ej(1 − e)]2 = = [(1 − e)je]2 theo Mệnh đề 43 ta ej − eje = ej(1 − e) ∈ ∆(R) je − eje = (1 − e)je ∈ ∆(R) Suy je − ej ∈ ∆(R) Vì ej + je = 2ej + (je − ej) ∈ ∆(R) (2) ⇒ (3) suy từ định nghĩa Rõ ràng Hệ ?? suy từ Định lý 60 Nghĩa vành đơn vị thỏa mãn tính chất ∆(R) = Cho vành R, phần tử a ∈ R gọi phần tử quy mạnh tồn x ∈ R thỏa mãn a = a2 x Một vành mà phần tử phần tử quy mạnh gọi vành quy mạnh Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành quy; (2) R ∆U -vành quy mạnh; (3) R ∆U -vành quy đơn vị; (4) R thỏa mãn tính chất x2 = x với x ∈ R (R vành Boolean) Chứng minh (1) ⇒ (2) Từ R quy, iđêan phải khác khơng chứa phần tử lũy đẳng khác không Ta R vành rút gọn R aben (nghĩa là, phần tử lũy đẳng R tâm) Giả sử R khơng phải vành rút gọn, tồn phần tử khác không a ∈ R thỏa mãn a2 = Theo Định lý 47, có phần tử lũy đẳng e ∈ RaR thỏa mãn eRe ∼ = M2 (T ), T vành khơng tầm thường Theo Mệnh đề 44 M2 (T ) ∆U -vành, điều mâu thuẫn Định lý 44 (2) ⇒ (3) Hiển nhiên (3) ⇒ (4) Cho x ∈ R Khi x = ue u ∈ U (R) e = e ∈ R Do R ∆U -vành, nên có u = hay y x = e, x lũy đẳng Chúng ta kết luận R vành Boolean (4) ⇒ (1) Hiển nhiên Một vành R gọi nửa quy R/J(R) quy phần tử lũy đẳng nâng lên modulo J(R) Vành R gọi vành biến đổi phần tử a ∈ R, tồn e2 = e ∈ aR thỏa mãn − e ∈ (1 − a)R Hoàn tồn tương tự, có kết sau: Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành nửa quy; (2) R ∆U -vành biến đổi; (3) R/J(R) vành Boolean Hệ Cho R ∆U -vành Khi đó, điều kiện sau tương đương (1) R vành nửa quy; (2) R vành biến đổi; (3) R vành clean Một vài tính chất đại số ∆U -vành Mệnh đề Cho R vành 2-nguyên thủy Nếu vành đa thức R[x] ∆U -vành, R ∆U -vành Chứng minh R vành 2-nguyên thủy, theo Mệnh đề ??, ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành Chứng minh (1) Điều suy từ Mệnh đề 43 (5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]) Vì R ∼ = R[[x]]/(x) nên (2) suy từ Mệnh đề 43 (5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu vành thỏa mãn ϵi = idR Khi đó, khẳng định sau (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) nên ϵ(U (S)) = U (R) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆(R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Thật vậy, với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = 1+∆(R), R ∆U -vành Suy y −1 = i(x)+v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Cho vành R nhóm G, ta ký hiệu vành nhóm X R G RG Một phần tử tùy ý α ∈ RG có dạng α = rg g rg ∈ R g∈G Giả sử R vành M vị nhóm, RM gọi vành vị nhóm định nghĩa giống vành nhóm Mệnh đề Cho R vành, M vị nhóm RM vành vị nhóm Nếu RM ∆U -vành R ∆U -vành Chứng minh Ta xét quan hệ bao hàm ι : R → RM (ι(r) = re với e phần tử đơn vị vị nhóm ! M ) ϵ : RM → R đồng cấu mở rộng X X xác định ϵ rm m = rm ([?] Mệnh đề II.3.1) Khi ta đủ m∈M m∈M điều kiện để áp dụng Bổ đề ?? (2) Ta có kết quả, vành đa thức R[X] ∆U -vành R ∆U -vành Với vành đa thức vành giao hoán, ta kết tốt Ta biết R vành giao hốn có đơn vị f = a0 + a1 x + · · · + an xn ∈ R[x] f khả nghịch R[x] a0 khả nghịch R a1 , a2 , , an phần tử lũy linh trong R Từ nhận xét ta có mệnh đề sau Mệnh đề Cho R vành giao hốn có đơn vị Vành đa thức R[x] R ∆U R ∆U ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép tốn lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép tốn giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép tốn lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hoán nhóm Định nghĩa Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hốn tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa 13 Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau Z z+t ′ ′ ′ (ϱ (s) − ϱ (z))ds ≤ |t|ϵ(|t|), |ϱ(z+t)−ϱ(z)−tϱ (z)| = ∀z ∈ R, ∀t ∈ [−1, 1], z (11) phần dư ϵ : [0, +∞) → [0, +∞) xác định sau ϵ(τ ) := sup{|ϱ′ (s) − ϱ′ (z)| : s, z ∈ R, |s − z| ≤ τ } ∈ [0, ∞), τ ∈ [0, +∞) Hơn nữa, ϱ′ liên tục R nên (12) lim ϵ(τ ) = Mặt khác, cho K0 := spt(ϱ), ϱ(x − y + t) − ϱ(x − y) − tϱ′ (x − y) = y ∈ / x + B(0, 1) − K0 , ∀t ∈ B(0, 1), x − y + t ∈ / K0 với t ∈ B(0, 1) Ký hiệu K := x + B(0, 1) − K0 , từ (??), ta suy |ϱ(x − y + t) − ϱ(x − y) − tϱ′ (x − y)||f (y)| ≤ |t|ϵ(|t|)χK (y)|f (y)|, ∀y ∈ R, ∀t ∈ [−1, 1] (13) Theo (??), (??), (??) định lý hội tụ bị trội, ta (??) (ii) Để đơn giản, ta ký hiệu ϱh ≡ ϱ Lưu ý, f ∗ ϱ : Rn → R liên tục, đo Đầu tiên, giả sử ≤ p < ∞ Khi Z Z Z p p dx f (x − y)ϱ(y)dy (14) ∥f ∗ ϱ∥Lp (Rn ) = |(f ∗ ϱ)(x)| dx = n n n R R R Nhớ lại Bài tập Cho h : Rn → Z R ϱ : Ω → [0, +∞) hàm đo Lebesgue giả sử ϱdx = Chứng minh với p ∈ Rn [1, +∞) Z p |h|ϱdx Rn Z ≤ Rn |h|p ϱdx

Ngày đăng: 04/07/2023, 15:53

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w