Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 109 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
109
Dung lượng
575,1 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: NỘI SUY CÁC BẤT ĐẲNG THỨC ĐẠI SỐ ĐỒNG BẬC LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Để giải mơ hình tốn học ta có nhiều cách tiếp cận, cách sử dụng chuyên ngành khoa học khác Lý thuyết phương trình vi phân, Lý thuyết phương trình đạo hàm riêng, Đại số tuyến tính, Nếu ngành khoa học nêu việc nghiên cứu mơ hình với biến liên tục tỏ xác định mạnh mơ hình biến rời rạc việc sử dụng kết kiến thức lý thuyết sai phân cho thấy giá trị vượt trội Thực tế mô hình liên quan đến dân số, tài chính, mơi trường, ngân hàng, Và vấn đề Lý thuyết phương trình vi phân, Phương trình đạo hàm riêng giải dựa Lý thuyết sai phân 489 2 Không gian hữu hạn chiều Định nghĩa (i) Một không gian vector E trường số thực gọi hữu hạn chiều bao gồm hữu hạn vector độc lập tuyến tính (ii) Số lớn vector độc lập tuyến tính không gian vector hữu hạn chiều E gọi chiều ký hiệu dimR E Hệ B ⊂ E sinh dimR E vector độc lập tuyến tính gọi sở Định lý Giả sử E không gian vector hữu hạn chiều dimR E = n (i) Nếu B ⊂ E sở, B sinh E , cụ thể spanR B = E (ii) E Rn đẳng cấu tuyến tính (iii) Giả sử ∥.∥1 ∥.∥2 hai chuẩn E Khi (E, ∥.∥1 ) (E, ∥.∥2 ) đẳng cấu topo (iv) Giả sử ∥.∥ chuẩn E Khi (E, ∥.∥) (E ′ , ∥.∥E ′ ) đẳng cấu topo Theo tập trước, không gian định chuẩn hữu hạn chiều (E, ∥.∥) đẳng cấu topo với không gian Hilbert Rn Đây đặc trưng mạnh, khơng cịn cho khơng gian định chuẩn vơ hạn chiều Các đặc trưng ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) 3.1 Các tính chất tổng qt ∆U -vành Bổ đề Cho R vành tùy ý, ta có (1) ∆(R) vành R (2) ∆(R) iđêan R ∆(R) = J(R) (3) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R) Y Y Y (4) Nếu R = Ri tích vành Ri , ∆( Ri ) = ∆(Ri ) i∈I i∈I i∈I (5) Nếu R vành nửa địa phương, ∆(R) = J(R) (6) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ) (7) ∆(R[[x]]) = ∆(R)[[x]] Vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề R ∆U -vành U (R) + U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, Lấy u, v ∈ U (R), ta có + u ∈ ∆(R), − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) Các tính chất ∆U -vành Mệnh đề Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R division ring, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R); (4) R Dedekind finite; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể, điều áp dụng cho Z = Z(R) tâm R Chứng minh (1) Hiển nhiên (2) (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành, 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi − ba lũy đẳng R, [b(1 − ba)2 ] = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆ Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) ideal, ∆(R/I) = ∆(R)/I Giả sử R ∆U vành Khi u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆(U )vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Giả thiết U (T ) = U (T ) ∩ T nghĩa ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) Định lý Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (⇒:) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng 0 − a 0 0 minh R division Lấy a ∈ R, a ̸= 0, ta có X = 0 Mn (R) X = Do Mn (R) ∆U -vành, ta lấy X ∈ ∆(Mn (R)) Lấy U = ∈ 0 0 0 0 ∈ Mn (R) Khi In − U X = 0 a 0 0 khả nghịch Mn (R), hay a ∈ U (R) Do đó, R division ∼ Tiếp theo, ta chứng minh R = F2 Lấy a ∈ R, a ̸= a ̸= Lấy a 0 0 a 0 0 X= ∈ Mn (R) Khi X khả nghịch Vì Mn (R) 0 a 0 0 0 1 0 0 1−a 0 − a ∆U -vành nên ta có In − X = ∈ ∆(Mn (R)) 0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2 1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết, ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2 X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Định lý Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành u m Chứng minh (:⇒) Lấy u¯ = ∈ U (T (R, M )) = T (U (R), M ), u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy a ¯= 0 + a m a ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy Hệ 1.Giả sửM (R, S) song môđun Khi vành ma trận tam giác dạng R M S ∆U -vành R S ∆U -vành Hệ R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ 3.2 Một vài tính chất đại số ∆U -vành Nhớ lại rằng, vành R gọi vành 2-primal nguyên tố N (R) Mệnh đề Cho R vành 2-primal Nếu vành đa thức R[x] ∆U vành, R ∆U -vành Chứng minh R vành 2-primal, theo [10, Mệnh đề 19], ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành Chứng minh (1) Điều suy từ Mệnh đề 2.4(5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]), R ∼ = R[[x]]/(x), kết suy từ Mệnh đề 2.4(5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu thỏa ϵi = idR (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆((R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = + ∆(R), R ∆U -vành Suy y − = i(x) + v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Mệnh đề Cho R vành, M monoid RM monoid ring Nếu RM ∆U -vành, R ∆U -vành Mệnh đề Cho R vành giao hoán có đơn gị Vành đa thức R[x] R ∆U R ∆U 3.3 Tính chất ∆U lớp vành Mệnh đề Các điều kiện sau tương đương vành R (1) R ∆U -vành (2) Tất clean elements R ∆-clean Định lý Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Với a ∈ R, ta có a − a2 ∈ ∆(R) a − e ∈ ∆(R) e lũy đẳng, e ∈ R; (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Bổ đề Nếu R vành unit-regular ∆(R) = Định lý Cho R vành, điều sau tương đương (1) R regular ∆U -vành (2) R strongly regular ∆U -vành (3) R unit-regular ∆U -vành (4) R có identity x2 = x (R vành Boolean) Định lý Cho R vành, điều sau tương đương (1) R semiregular ∆U -vành (2) R exchange ∆U -vành Khi đó, theo Mệnh đề ta có X X n |CDn (ril )| = CDn (r ) + |CDn (ril )| 1⩽l⩽ ni −1 1⩽l⩽ ni −1 n l̸= 2i = |Dn | + X n i − |R1 | = 2n + n n i −2 = n2 , i 4n n |CDn (ril+j s)| = U n2 ,il+j = i 0⩽l⩽ ni −1 i Từ suy X |CDn (x)| = 2n + x∈Ui,j Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = |Ui,j ||Dn | n2 4n n(n + 2i + 4) + = i i i |CDn (x)| = x∈Ui,j Vậy ta có điều phải chứng minh n(n + 2i + 4) n + 2i + = 2n i 4n 2n i 46 Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm nhị diện D3 D4 cách áp dụng Mệnh đề ?? Ví dụ (i) Với n = 3, xét nhóm nhị diện D3 (cho Ví dụ ??) Các nhóm D3 R1 = ⟨r⟩, R3 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩; D3 Khi 3+3 3+1 = , Pr(R3 , D3 ) = = 1; 2·3 2·3 3+1 Pr(T0 , D3 ) = Pr(T1 , D3 ) = Pr(T2 , D3 ) = = ; 2·3 Pr(D3 , D3 ) = Pr(D3 ) = Pr(R1 , D3 ) = (ii) Với n = 4, xét nhóm nhị diện D4 (cho Ví dụ ??) Các nhóm D4 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; D4 Khi Pr(R1 , D4 ) = 4+2·1 4+2·2 4+4 = , Pr(R2 , D4 ) = = 1, Pr(R4 , D4 ) = = 1; 2·4 2·4 2·4 Pr(T0 , D4 ) = Pr(T1 , D4 ) = Pr(T2 , D4 ) = Pr(T3 , D4 ) = Pr(U2,0 , D4 ) = Pr(U2,1 , D4 ) = 15 4+2 = ; 2·4 4+2·2+4 = ; Pr(D4 , D4 ) = Pr(D4 ) = 4·4 Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hoán nhóm Định nghĩa 14 Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} 47 Độ giao hoán tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ?? ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa ?? Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau 48 • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau 49 • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hốn tương đối ta có kết sau Mệnh đề 27 Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh 50 Kết sau cho ta cơng thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề 28 Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề ??, ta có k X X |CG (x)| = |O(xi )||CG (xi )| Pr(H, G) = |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hốn tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề Cho H nhóm G Khi với phần tử x ∈ G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề ??, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| 51 Mà H ∩ CG (x) = {a ∈ H | a ∈ CG (x)} = CH (x), từ suy |H| |G| ⩽ |CG (x)| |CH (x)| Do đó, theo Định lý Lagrange ta có |H : CH (x)| ⩽ |G : CG (x)| Từ lập luận ta thấy dấu đẳng thức xảy G = HCG (x) Vậy ta có điều phải chứng minh Mệnh đề sau cho ta đánh giá độ giao hoán tương đối nhóm nhóm nhờ độ giao hốn nhóm nhóm Mệnh đề 29 Cho H nhóm nhóm G Khi Pr(G) ⩽ Pr(H, G) ⩽ Pr(H) Chứng minh Theo Mệnh đề ?? ta có X Pr(H, G) = |H||G| |CG (x)| = x∈H X |CG (x)| |H| |G| x∈H Theo Bổ đề ?? ta có |CG (x)| |C (x)| ⩽ H với x ∈ H |G| |H| Từ suy Pr(H, G) ⩽ X |CH (x)| X = |CH (x)| = Pr(H) |H| |H| |H| x∈H x∈H Theo Mệnh đề ?? ta có Pr(H, G) = X X |CH (y)| |CH (y)| = |H||G| |G| |H| y∈G y∈G