CHƯƠNG 1 Lý thuyết về mô hình VaR (Value at Risk ) Đề án môn học Khoa Toán kinh tế LỜI MỞ ĐẦU Trong nền kinh tế thị trường, sự tồn tài và phát triển của thị trường tài chính là một tất yếu khách quan[.]
Đề án mơn học Khoa Tốn kinh tế LỜI MỞ ĐẦU Trong kinh tế thị trường, tồn tài phát triển thị trường tài tất yếu khách quan Với chức quan trọng dẫn vốn từ nơi thừa vốn đến nơi thiếu vốn, tác động trực tiếp đến hiệu đầu tư cá nhân, doanh nghiệp, đến hành vi tiêu dùng tới động thái chung kinh tế Bởi tồn thị trường tài tất yếu gắn với phát triển mạnh mẽ thị trường chứng khoán Trên giới thị trường chứng khốn hình thành từ lâu đến có phát triển mạnh mẽ Nú thiết lập hầu có kinh tế thị trường nói khơng nước có kinh tế phát triển mà khơng có hoat động thị trường chứng khốn Nhận thức đươc tầm quan trọng thị trường chứng khốn, Việt Nam thức đưa thị trường chứng khoán vào hoạt động với khai trương trung tâm giao dịch chứng khốn thành phố Hồ Chí Minh vào ngày 20/7/2000 Tính đến thị trường chứng khốn Việt Nam hình thành năm, cú bước tiến định Thị trường chứng khoán thị trường lợi nhuận rủi ro Khi tham gia vào thị trường nhà đầu tư mong muốn kì vọng đạt lợi nhuận cao Tuy nhiên lợi nhuận ln kèm với rủi ro Vì nhà đầu tư cần phải chuẩn bị thông tin, kiến thức vốn tư khả chấp nhận rủi ro đầu tư Thị trường chứng khoán kênh đầu tư tiềm ẩn nhiều rủi ro phương pháp giảm thiểu rủi ro đầu tư vào nhiều loại chứng khoán khác Nhà đầu tư chứng khốn ln mong muốn đạt lợi nhuận cao mà rủi ro thua lỗ thấp Nếu dồn toàn khoản tiền mỡnh cú vào loại cổ phiếu nhầt nguy thua lỗ cổ phiếu giảm giá rõ ràng Với kiến thức lý thuyết thực tiễn, em lựa chọn ứng dụng mơ hình VaR vào chuỗi giá cổ phiếu SAM công ty cổ phần cáp vật liệu viễn thơng Sacom, để phân tích đánh giá rủi ro loại cổ phiếu làm đề án mơn học Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế CHƯƠNG LÝ THUYẾT VỀ MƠ HÌNH VAR (VALUE AT RISK ) Khái niệm giá trị rủi ro (VaR) Mơ hình VaR (Vector autoregressive models) mơ hình véc tơ biến số tự hồi quy Mỗi biến số phụ thuộc tuyến tính vào giá trị trễ biến số giá trị trễ biến số khác Mơ hình VaR dạng tổng qt: Yt = A1Yt-1+ A2Yt-2 + … + ApYt-p + St + ut (1.1) Yt = Y 1t Y2 t Ymt ; ut = u1t u 2t u mt ; Ai (i=1,2,…,p): ma trận vuông cấp m*m; St = (S1t, S2t, …, Smt) Y bao gồm m biến ngẫu nhiên dừng; u véc tơ nhiễu trắng; S t véc tơ biến xác định, bao gồm số, xu tuyến tính đa thức Viết dạng toán tử trễ, ta có: Yt = (A1L + A2L2 + … + ApLp)Yt + St + ut Mơ hình (1.1) gọi mơ hình VaR cấp p, ký hiệu VaR(p) Mơ hình VaR(p) tương đương với mơ hình VaR(1) sau đưa thờm cỏc biến thích hợp Kết luận quan trọng mơ hình VaR(1) mơ tả cơng thức đơn giản quan sát cách trực giác Yt = A1Yt-1 + St + ut Giả sử m = 2, ta có: Y1t Y 2t = a11 a 21 a12 a 22 Y1t Y 2t + S 1t S 2t + u1t u 2t Dạng hiển: Y1t = a11Y1t-1 + a12Y2t-1 + S1t + u1t Y2t = a21Y1t-1 + a22Y2t-1 + S2t + u2t Ta nhận thấy AR(1) bước ngẫu nhiên A1 ma trận đơn vị Giả sử St véc tơ số: a11 a 21 a12 = a 22 1 0 0 , St = (S1, S2)’ Xét AR(2): Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế Y1t Y 2t S 1t S 2t = a11 a 21 a12 a 22 Y1t Y 2t b12 b22 b11 b 21 + Y1t Y 2t + u1t u 2t + Ta đặt Xt = Yt-1 Khi AR(2) viết lại sau: Y1t = a11Y1t-1 + a12Y2t-1 + b11X1t-1 + b12X2t-1 + S1t + u1t Y2t = a21Y1t-1 + a22Y2t-1 + b21X1t-1 + b22X2t-1 + S2t + u2t X1t = Y1t-1 X2t = Y2t-1 Hay viết dạng ma trận ta có: Y 1t Y t X 1t X t Y 1t Y t X 1t X t u1t u 2t a11 a 21 = + 1 0 0 0 0 0 0 0 0 0 0 + a12 a 22 S 1t S 21 0 b11 b21 0 b12 b22 + Có thể tổng qt hóa cỏch trờn, mơ hình AR(p) hay VaR(p) biến đổi thành mơ hình VaR(1) cách thêm vào biến số thích hợp Một mơ hình VaR(p) có m phương trình dạng: Yt = (A1L + A2L2 + … + ApLp)Yt + St + ut biến đổi thành mơ hình VaR(1) có m*p phương trình: Yt* = AY*t-1 + St + ut Trong đó: Yt * S t = Yt Yt Yt , ut = p u t A1 I m , A = A2 Im Ap 0 0 Im Ap 0 , St = Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế Y *t , St, ut cỏc vộc tơ cấp mp 1; Ma trận mp mp Như vậy, để tìm lời giải dạng hiển VaR(p) bậc cao cần xét mơ hình AR(1) Ưu điểm mơ hình VaR: Giá rị biến số mô hình VaR phụ thuộc vào giá trị khứ biến số Do đó, việc ước lượng phương trình khơng địi hỏi thơng tin khác ngồi biến số mơ hình Vì khơng có quan hệ đồng thời biến số nên người ta sử dụng OLS phương pháp ước lượng hợp lý cực ước lượng phương trình mơ hình Khi dự báo, sử dụng mơ hình VaR sử dụng ngắn hạn trường hợp sử dụng dự báo động Nhược điểm mơ hình VaR: Mơ hình VaR đòi hỏi biến số biến dừng Mơ hình VaR(p) với p khơng cho trước nên khơng thể biết độ dài trễ bao nhiêu? Mơ hình VaR khơng dùng để phân tích sách Khi ước lượng đòi hỏi số quan sát nhiều mơ hình có nhiều phương trình Phương pháp xác định giá trị rủi ro (VaR) 2.1 Phương pháp Risk metrics 2.1.1 Nội dung J.P Morgan phát triển phương pháp luận RiskMetrics để tính VaR đến năm 1995 Long & More thực nghiệm Kí hiệu: rt lợi suất hàng ngày liên tiếp danh mục đầu tư Ft-1 hàm phân phối tích lũy, phản ánh lượng thơng tin thu thập thời kì t-1 Các giả thiết: rt / Ft-1 ~ N(àt,σ2t) Trong đó: àt trung bình có điều kiện rt σ2t phương sai có điều kiện RiskMetrics giả định , r t/Ft ~ N t , t , μt trung bình có điều kiện & t2 phương sai có điều kiện rt Phương pháp giả định rằng: àt σ2t tuân theo mơ hình chuỗi thời gian sau: àt = r t = ut (2.1) σ2t = ασ2t-1 + (1-α)rt-1 với (0 < α < 1) Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Trong đó: ut =σt*εt q trình IGARCH(1,1) khơng có bụi; giá trị α thường khoảng (0.9;1) Một thuộc tính tốt bước ngẫu nhiên mơ hình IGARCH phân phối có điều kiện tổng lợi suất dễ dàng đạt Đặc biệt, cho k thời kỳ , lợi suất từ điểm (t+1) đến thời điểm (t+k) là: rt k rt 1 rt k rt k Chúng ta sử dụng ngoặc vuông [k] biểu thị lợi suất k thời kỳ Dưới mô hình đặc biệt IGARCH(1,1) phương trình (2.1), phân phối có điều kiện rt [k]: Ft chuẩn với giá trị trung bình phương sai t2 [k] Ở đây, t2 k tính theo phương pháp dự báo mơ hình độ dao động Sử dụng giả thiết t độc lập phương trình (2.1) ta có: k t2 k VaR rt k / Ft VaR u t i / Ft i 1 Ở đây, VaR(u t i / Ft ) E ( t21 / Ft ) thu cách đệ quy Sử dụng rt u t t * t , viết lại phương độ dao động phương trình IGARCH(1,1) phương trình (1.2) sau: t2 t2 (1 ) * t2 * ( t2 1) t Trong trường hợp riêng, ta có: t2i t2i (1 ) * t2i * ( t2i 1) Với i = , ,k Vì, E t i / Ft 0i 2 Phương trình trước rằng: E t2i / Ft E t2i / Ft ; với i= 2, , k (2.2) Với dự báo mức độ dao động bước tiếp theo, phương trình (2.1) rằng: t21 * t2 (1 ) * rt Vì thế, phương trình (2.2) cho thấy VaR( rt i / Ft ) t21 với i 1 Từ đó, t2 k k * t21 Kết rt k / Ft (0, k t21 ) Vì vậy, mơ hình IGARCH(1,1) phương trình (2.1), phương sai có điều kiện rt k , k tỷ lệ theo theo thời gian Độ lệch tiêu chuẩn có điều kiện lợi suất k thời kỳ k * t 1 Nếu vị tài trường vị, phần xảy có sụt giảm giá lớn (như lợi suất âm lớn) Nếu xác suất thiết lập tới 5% RiskMetrics sử dụng 1,65 * t 1 để đo lường rủi ro danh mục đầu tư Điều có nghĩa, điểm phân vị 5% có phân phối chuẩn với giá trị trung bình độ lệch tiêu Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế chuẩn t 1 Điểm phân vị 5% thực - 1,65 * t 1 , dấu âm bị loại bỏ việc hiểu dấu hiệu phần bị Vì vậy, độ lệch tiêu chuẩn đo lường % VaR hàng ngày danh mục đầu tư RiskMetrics : VaR = Giá trị danh mục t * 1,65 * t 1 Ứng với k ngày là: VaR(k) = Giá trị danh mục t * 1,65 k * t 1 Ở đối số k VaR sử dụng để biểu thị cho trục thời gian Vì RiskMetrics có : VaR k k *VaR Điều quy tắc bậc hai thời gian tính tốn VaR RiskMetrics Với mơ hình RiskMetrics có quy tắc bậc hai thời gian: (k ) k t 1 Giả sử ta muốn tính giá trị rủi ro danh mục qua ngày với 5% xác suất mà phần thực giá trị danh mục lớn giá trị ước lượng VaR Việc tính tốn giá trị rủi ro gồm bước sau: Xác định giá trị thị trường hành danh mục (mark-to-market), biểu thị giá trị V0 Xác định giá trị tương lai danh mục : V theo công thức V1=V0*er Ở đây, r biểu diễn lợi suất thu danh mục đầu tư theo thời gian Với ngày bước tính khơng cần thiết RiskMetrics giả định lợi suất r = Tính giá trị dự báo lợi suất ngày danh mục biểu thị giá trị rˆ , để 5% xác suất giá trị thực nhỏ rˆ Được biểu thị theo công thức sau: Probability( r < rˆ ) = 5% Xác định giá trị xấu danh mục tương lai: Vˆt , Vˆ1 V0 e rˆ Giá trị rủi ro đo lường cách đơn giản là: V0 Vˆ1 Việc đánh giá VaR viết V0(1-er) Trong trường hợp này, rˆ giá trị đủ nhỏ e rˆ 1 rˆ VaR sấp xỉ V0 rˆ Để minh họa cho phương pháp Risk metrics này, ta có ví dụ sau: Nhà đầu tư có danh mục với giá trị 100 triệu đồng tài sản A với, biết σ = 7% α = 5% (phương sai lợi suất theo ngày tài sản) VaR = 100(-1,65)7% = - 11,69 (triệu đồng) Từ ta thấy nhà đầu tư định đầu tư vào danh mục trờn thỡ phải chấp nhận khoản tiền rủi ro xảy 11.69 triệu đồng Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Tính VaR theo mơ hình RiskMetrics dễ dàng, dễ hiểu phương pháp nhiều ngân hàng, tổ chức tài sử dụng Tuy nhiên trường hợp chuỗi lợi suất không tuân theo phân bố chuẩn (tức có đồ thị hàm mật độ khơng đối xứng) ước lượng VaR thấp quy tắc bậc hai thời gian không cũn đỳng Từ thực tế đòi hỏi phải sử dụng phương pháp khác để tính VaR 2.1.2 Ưu, nhược điểm phương pháp Ưu điểm: Một lợi ích RiskMetrics tính tốn dễ dàng, dễ hiểu ứng dụng Một lợi ích khác phương pháp tính tốn rủi ro rõ ràng thị trường tài Nhược điểm: Khi mức lợi suất có phần dày, giả định mang tính chuẩn hóa sử dụng kết việc giá trị ước lượng VaR thấp Một cách tiếp cận khác để tính VaR tránh đưa giả định Quy tắc bậc hai thời gian kết mơ hình đặc biệt sử dụng RiskMetrics Nếu giả định giá trị trung bình giả định mơ hình đặc biệt IGARCH(1,1) lợi suất khơng đạt được, quy tắc khơng có giá trị Ta xem xét ví dụ đơn giản: rt u t ; u t t * t ; 0 t2 * t2 (1 ) * u t2 Ở đây, { t } chuỗi nhiễu trắng theo tiêu chuẩn Gauxơ Với giả định 0 , ứng với việc nắm giữ lợi suất nhiều cổ phiếu có khối lượng giao dịch lớn thị trường Trong mơ hình đơn giản này, phân phối rt 1 / Ft N ( ; t21 ) Sử dụng điểm phân vị phân phối có điều kiện ta tính VaR sau: Với điểm phân vị 5% VaR = 1,65 * t 1 Với điểm phân vị 1% VaR = 2,33 * t 1 Ứng với k thời kỳ, phân phối rt k / Ft N (k ; k t21 ) Điểm phân vị 5% sử dụng phép tính VaR k thời kỳ là: VaR = k 1,65 k * t 1 k ( k 1,65 * t 1 ) Do đó, VaR k k * VaR lợi suất trung bình khác Điều dễ dàng quy tắc không đạt mơ hình độ dao động IGARCH(1,1) lợi suất khơng phải mơ hình khơng có bụi ( hay mơ hình khơng có độ dịch) Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Ví dụ: Dựa vào mơ hình Garch dự báo sau thời kì lợi suất cổ phiếu theo ngày SAM 11% độ lệch chuẩn theo ngày 7% Với mức ý nghĩa 5% ta có: VaR = 0,11 - 1,65*0,07 = - 0,0055 = - 0,55% Từ ví dụ ta thấy: với mức độ dao động cổ phiếu 8% nhà đầu tư tiếp tục đầu tư vào cổ phiếu SAM gánh chịu lượng tổn thất rủi ro cổ phiếu gây 0,0055 so với tổng giá trị danh mục đầu tư (độ tin cậy 95%) 2.2 Phương pháp tốn kinh tế để tính VaR 2.2.1 Phương pháp tốn kinh tế để tính VaR thời kỳ Xem xét loga lợi suất rt tài sản Mơ hình chuỗi thời gian chung cho rt viết là: p q rt i * rt i u t j * u t j i 1 (2.3) j 1 u t t * t n m i 1 j 1 t2 i * u t2 i j * t2 j (2.4) Phương trình (2.3) (2.4) phương trình trung bình phương trình độ dao động rt , chúng thuộc lớp ARMA(p,q) GARRCH(n,m) Hai phương trình sử dụng để thu giá trị dự báo bước giá trị trung bình có điều kiện phương sai có điều kiện rt với giả định tham số biết Đặc biệt có: p rˆt (1) i rt 1 i i 1 q j u t 1 j j 1 n m i 1 j 1 ˆ t2 (1) i u t21 i j t21 j Nếu giả định t nhiễu Gauxơ, phân phối có điều kiện rt 1 thơng tin có thời điểm t N rˆt (1);ˆ t (1) Những điểm phân vị phân phối có điều kiện dễ dàng đạt để tính VaR Với điểm phân vị 5%, VaR = rˆt (1) 1,65 * ˆ t (1) Nếu giả định t phân phối chuẩn hóa student – t với m bậc tự do, điểm phân vị : r t 1 t m p t 1 Ở đây, t m p điểm phân vị thứ p phân phối chuẩn hóa stduent – t với m bậc tự Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế Mối quan hệ điểm phân vị phân phối student – t với m bậc tự biểu thị t m ; điểm phân vị phân phối chuẩn hóa student – t biểu thị t m là: tm q q Pr t m* p Pr t m q Pr m / m 2 m / m m / m với m>2 Điều có nghĩa : q điểm phân vị p phân phối student – t với m bậc tự q m / m 2 điểm phân vị p phân phối chuẩn hóa stdent – t với m bậc tự Vì vậy, t mụ hỡnh GARCH phương trình (2.4) phân phối chuẩn hóa student – t với m bậc tự xác suất p, điểm phân vị sử dụng để tính toán VaR thời kỳ thời điểm t là: r t 1 t m p t 1 m / m 2 Với t m p điểm phân vị p phân phối student – t với m bậc tự 2.2.2 Phương pháp toán kinh tế để tính VaR nhiều thời kỳ Giả định rằng, thời điểm h thường tính VaR k thời kỳ tài sản mà lợi suất rt Biến số lợi suất lợi suất k thời kỳ thời điểm gốc dự báo h: rh[k] = rh+1+…rh+k Nếu lợi suất rt theo mơ hình chuỗi thời gian phương trình (2.3) (2.4) giá trị trung bình có điều kiện biến số rh[k] /Fk đạt phương pháp dự báo mơ hình phương sai sai số thay đổi chuỗi thời gian Lợi suất kỳ vọng sai số dự báo Giá trị trung bình có điều kiện E(r h[k] /Fk) thu phương pháp dự báo mơ hình ARIMA Đặc biệt, có rˆh [k] = rh[1]+…+rh[k] Ở đây, rh[ ] giá trị dự báo lợi suất bước thời điểm dự báo gốc h Những dự báo thu cách đệ quy Sử dụng phép biểu diễn MA: Rt= μ + ut + ψ1ut-1 +ψ2ut-2+…+ ψnut-n mơ hình ARMA phương trình (2.3), viết sai số dự báo bước thời điểm dự báo gốc h sau: eh( ) = rh+ – rh( ) = uh+ + ψh+ uh+ -1+… Ta có dự báo MA với bước tiếp theo: rˆh () = μ + ψluh +ψl+1uh-1+… (2.5) Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Theo phương trình (2.5) sai số dự báo kiên kết Sai số dự báo lợi suất kỳ vọng k thời kỳ rh[k] tổng sai số dự báo từ thời kỳ đến k thời kỳ r t thời điểm dự báo gốc h viết sau: eh[k] = eh(1)+…+ eh(k) k1 = uh+1 + (uh+2 + ψ1uh+1)+…+ ψiuh+k-i (2.6) i 0 k1 = uh+k + (1+ ψ1) uh+k-1+…+( ψi)uh+1 i 0 Với ψ0 = Độ dao động kỳ vọng có điều kiện Dự báo độ dao động lợi suất k thời kỳ thời điểm dự báo gốc h bớờn số có điều kiện eh[k] /Fh Sử dụng giả thiết độc lập εt+i với i = 1,…,k Ở đây, i=1, ,k Ở đây, ut+i = ε t+i σt+I Chúng ta có: k VaR(eh[k]/Fh)=VaR(uh+k/Fh)+(1+ψ1) VaR(uh+k1/Fh)+…+( ψi)2.VaR(uh+k/Fh) i 0 Với h2 () giá trị dự báo độ dao động bước thời điểm dự báo gốc h Nếu mơ hình dao động mơ hình GARCH phương trình (2.4) dao động dự báo thu cách đệ quy Thí dụ xét mơ hình chuỗi thời gian đặc biệt sau: Rt = μt + ut ut =σt*εt σt2 = α0 + α1* ut-12 + β1*σt-12 Vì có, ψi=0 với i>0 Điểm dự báo lợi suất k thời kỳ thời điểm dự báo gốc h là: rˆh k k sai số dự báo liên kết là: eh[k] = uh+k+ uh+k-1 + …+ uh+1 Vì vậy, độ dao động dự báo lợi suất k thời kỳ thời điểm dự báo k gốc h là: VaR(eh[k]/Fh)= h () l 1 Sử dụng phương pháp dự báo mơ hình GARCH (1,1), có: σh2 ( ) = α0 + α1* uh2 + β1*σh2 σh2 ( ) = α0 + (α1 + β1) h2 ( 1) , 2, , k Vì vậy, VaR(rh[k]/Fh) đạt cách đệ quy Nếu εt nhiễu Gauxơ phân phối có điều kiện r h[k]/Fh chuẩn với giá trị trung bình bàng kμ phương sai VaR(rh[k]/Fh) Những điểm phân vị cần thiết phép tính VaR tính dễ dàng Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế CHƯƠNG ÁP DỤNG MƠ HÌNH VAR VÀO CHUỖI CỔ PHIẾU SAM 2.1 Giới thiệu Công ty Cổ phần Cáp Vật liệu Viễn thông (SACOM) Công ty cổ phần cáp vật liệu viễn thông Sacom thành lập từ tháng 02 năm 1998 từ q trình cổ phần hố doanh nghiệp Từ thành lập vị trí bờ vực phá sản SAM trở thành công ty hàng đầu cáp vật liệu viễn thông Năm 2005 vốn điều lệ công ty tăng mạnh từ 180 tỷ lên 418 tỷ để phục vụ cho nhu cầu đa dạng hoá sản phẩm ngành nghề Lĩnh vực kinh doanh bao gồm : - Sản xuất kinh doanh vật liệu viễn thông - Sản xuất kinh doanh vật liệu dân dụng - Xuất nhập trực tiếp nguuyờn vật liệu, sản xuất cỏp dõy Ngày giao dịch cổ phiếu SAM thị trường chứng khoáng 28 tháng 07 năm 2000 2.2 Áp dụng mơ hình VAR vào chuỗi cổ phiếu SAM Xét cổ phiếu SAM Công ty Cổ phần Cáp Vật liệu Viễn thông (SACOM) sàn HOSE thị trường chứng khoán Việt Nam với bảng số liệu theo phiên giao dịch từ ngày 01/03/2005 đến ngày 30/10/2009 gồm 1169 quan sát, đơn vị tớnh giỏ: ngàn VND (Nguồn: www.cophieu68.com) Ta có biểu đồ mơ tả biến động chuỗi cổ phiếu SAM: Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Như vậy, chuỗi giá thời kỳ quan sát có giai đoạn tăng giai đoạn giảm giá Giai đoạn cao lên tới 250.000 VND, cú lỳc giảm thấp 11.400 VND Gọi R lợi suất giá cổ phiếu SAM Từ số liệu thu thập sử dụng phần mềm Eview ta dễ dàng tính lợi suất (theo phiên giao dịch) cổ phiếu SAM (LS_SAM) theo công thức: S rt ln t St Ta có biểu đồ chuỗi lợi suất LS_SAM cổ phiếu SAM sau: Từ biểu đồ chuỗi lợi suất LS_SAM trên, ta thấy biến động lợi suất cổ phiếu chiều với biến động giá cổ phiếu Giá cổ phiếu tăng nhanh biến Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Toán kinh tế động lợi suất cổ phiếu mạnh Trực quan thấy độ dao động (phương sai) cổ phiếu SAM giai đoạn thay đổi theo thời gian, sử dụng mơ hình GARCH phù hợp Ta có đồ thị hàm mật độ thống kê mô tả chuỗi lợi suất LS_SAM: Bài tốn kiểm định: Ho: Chuỗi lợi suất có phân phối chuẩn H1: Chuỗi lợi suất khơng có phân phối chuẩn Nhìn vào giá trị P-value thống kê Jacque-Bera ta có: 0.000000 < 0.05, đủ sở bác bỏ H0 nên chuỗi lợi suất khơng có phân phối chuẩn Thực kiểm định tính dừng chuỗi lợi suất tỷ giá kiểm định nghiệm đơn vị Dickey-Fuller, ta có: |حqs| = |-13.09369| > |3.4388-| = |0.01 |ح |حqs| = |-13.09369| > |2.8645-| = |0.05 |ح |حqs| = |-13.09369| > |2.5683-| = |0.1 |ح Ta thấy giá trị |τ qs| = 13.09369 lớn giá trị tới hạn mức ý nghĩa 1%, 5%, 10% Như chuỗi lợi suất tỷ giá chuỗi dừng ta thực định dạng ước lượng mơ hình ARMA chuỗi lợi suất theo phương pháp Box-Jenkins Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Ta có lược đồ tương quan là: Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Quan sát lược đồ tương quan chuỗi ta thấy phương trình trung bình chứa AR(1), AR(2), AR(3), AR(4), AR(9), AR(13), AR(18), AR(19), AR(20), AR(21), AR(22), MA(1) Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Tiến hành kiểm tra ta thu mơ hình phù hợp sau: Dependent Variable: LS_SAM Method: Least Squares Date: 05/15/10 Time: 14:50 Sample(adjusted): 24 1169 Included observations: 1146 after adjusting endpoints Convergence achieved after iterations Variable Coefficient Std Error t-Statistic C -2.46E-05 0.001574 -0.015646 AR(1) 0.277050 0.028330 9.779542 AR(4) 0.077317 0.028391 2.723278 AR(9) 0.053459 0.028362 1.884868 AR(22) 0.061212 0.028637 2.137522 R-squared 0.096139 Mean dependent var Adjusted R-squared 0.092970 S.D dependent var S.E of regression 0.028284 Akaike info criterion Sum squared resid 0.912756 Schwarz criterion Log likelihood 2462.434 F-statistic Durbin-Watson stat 1.972269 Prob(F-statistic) Prob 0.9875 0.0000 0.0066 0.0497 0.0328 -3.04E-05 0.029698 -4.288716 -4.266709 30.34052 0.000000 Hệ số chặn C có giá trị Prob = 0.9875 > 0.05 suy khơng có ý nghĩa mặt thống kê, nên ta loại bỏ hệ số chặn C, khơng đưa vào mơ hình ước lượng Kiểm định chuỗi phần dư chuỗi lợi suất LS_SAM cổ phiếu SAM lược đồ tương quan: Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Vậy phần dư chuỗi lợi suất cổ phiếu LS_SAM nhiễu trắng Ta kiểm tra lược đồ tương quan chuỗi phần dư bình phương: Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Nhìn vào lược đồ hệ số tương quan tương quan riêng bình phương phần dư cho thấy tồn ARCH GARCH Ngoài ra, ta sử dụng kiểm định ARCH LM Test Eview để kiểm tra xem mơ hình có hiệu ứng ARCH hay khơng? Sử dụng Eview, ta có kết kiểm định: Tăng Thị Thu Phương Toán kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Cặp giả thiết: Ho: Mơ hình khơng có hiệu ứng ARCH H1: Mụ hỡnh có hiệu ứng ARCH Dựa vào giá trị P_value hai thống kê F nhỏ 0.05, đủ sở bác bỏ H0 nên mơ hình có hiệu ứng ARCH Giống phần mơ hình chuỗi thời gian ARIMA, mơ hình phân tích phương sai việc ta xác định bậc ARCH lớn nên việc ước lượng hệ số gặp nhiều khó khăn bất lợi, ta thêm thành phần GARCH với bậc thích hợp việc ước lượng hệ số trở nên đơn giản nhiều Thường ta có mơ hình GARCH (1,1) việc phân tích chuỗi tài hiệu Tăng Thị Thu Phương Tốn kinh tế 48 Đề án mơn học Khoa Tốn kinh tế Kiểm tra mơ hình ARCH ta thu mơ hình phù hợp sau: Nhận thấy giá trị P_value hệ số chặn C biến AR(9) lớn 0.05, nên ta loại bỏ biến khỏi mơ hình Ước lượng mơ hình ta có mơ hình phù hợp: Tăng Thị Thu Phương Toán kinh tế 48