ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP KIẾN THỨC TOÁN 12 Thời gian làm bài 40 phút (Không kể thời gian giao đề) Họ tên thí sinh Số báo danh Mã Đề 079 Câu 1 Cho hình nón có góc ở đỉnh bằng và chiều cao bằng 3 Gọi là[.]
ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 079 Câu Cho hình nón có góc đỉnh chiều cao Gọi đường trịn đáy hình nón cho Diện tích A Đáp án đúng: D B A Câu Cho Parabol C ( D tham số) Xác định C Đáp án đúng: D để B ; thỏa mãn nhận đỉnh D Câu Cho hai số phức mặt cầu qua đỉnh chứa ; Tính giá trị biểu thức A Đáp án đúng: D B Giải thích chi tiết: Đặt C ; D Theo ra: Thay , vào ta được: Khi đó, Câu Khẳng định sau khẳng định tính đơn điệu hàm số y= x−3 ? x A Hàm số đồng biến ℝ B Hàm số đồng biến khoảng xác định C Hàm số nghịch biến tập xác định D Hàm số nghịch biến ( − ∞; ) ( ;+ ∞ ) Đáp án đúng: B Giải thích chi tiết: Khẳng định sau khẳng định tính đơn điệu hàm số y= x−3 ? x A Hàm số nghịch biến tập xác định B Hàm số đồng biến ℝ C Hàm số nghịch biến ( − ∞; ) ( ;+ ∞ ) D Hàm số đồng biến khoảng xác định Lời giải TXĐ: D=ℝ ¿ {0¿} x−3 y= ⇒ y '= >0 , ∀ x ≠ ⇒ hàm số đồng biến khoảng xác định x x Câu Tập xác định A hàm số B C Đáp án đúng: C Câu Cho hàm số Gọi ? , D xác định có bảng biến thiên hình vẽ: giá trị lớn giá trị nhỏ hàm số A B Đáp án đúng: A Giải thích chi tiết: Dựa vào bảng biến thiên nhận thấy: Giá trị lớn hàm số Giá trị nhỏ hàm số Suy Câu Hàm số A B Đáp án đúng: C Giải thích chi tiết: Tập xác định: C đoạn Giá trị D nghịch biến khoảng ? C D , Bảng biến thiên sau: Hàm số nghịch biến khoảng Câu Khối cầu có đường kính Thể tích khối cầu A B C Đáp án đúng: D D Câu Số giá trị nguyên thỏa thuộc để đạt cực trị A B C D Đáp án đúng: C Câu 10 Cho tam giác ABC có AB =3 ; AC= góc A 300 Tính diện tích tam giác ABC? A B 12 C 24 D Đáp án đúng: A Câu 11 Tìm tập nghiệm phương trình : A Đáp án đúng: C C B Câu 12 Trong không gian , cho mặt phẳng Phương trình mặt phẳng A C Đáp án đúng: C A Lời giải D qua điểm B D , cho mặt phẳng Phương trình mặt phẳng B có véctơ pháp tuyến Giải thích chi tiết: Trong khơng gian tuyến C qua điểm có véctơ pháp D Phương trình mặt phẳng cần tìm là: Câu 13 Đồ thị hàm số có tâm đối xứng điểm A Đáp án đúng: A B Câu 14 Cho hàm số C Khi hồnh độ D Mệnh đề sau đúng? A Hàm số đồng biến khoảng B Hàm số nghịch biến tập xác định C Hàm số đồng biến khoảng D Hàm số đồng biến khoảng Đáp án đúng: D Câu 15 Trong không gian , cho mặt cầu Mặt phẳng tiếp xúc với mặt phẳng song song với A B C Đáp án đúng: D D Giải thích chi tiết: Trong khơng gian , cho mặt cầu Mặt phẳng tiếp xúc với A B C Lời giải D Mặt cầu có phương trình mặt phẳng song song với có phương trình có tâm Mặt phẳng cần tìm song song với nên có dạng: Ta có: Vậy phương trình mặt phẳng cần tìm Câu 16 Bà Mai gửi tiết kiệm ngân hàng MBbank với số tiền 50 triệu với lãi suất 0,79% tháng, theo phương thức lãi kép Tính số tiền vốn lẫn lãi bà Mai nhận sau năm? ( làm trịn đến hàng nghìn) A Đáp án đúng: B B C D Giải thích chi tiết: +) Áp dụng cơng thức lãi suất kép số tiền thu sau n chu kỳ là: , A số tiền gửi ban đầu, r lãi suất chù kỳ n số chu kỳ +) Bà Mai gửi số tiền A = 50 triệu = 50000000đồng, với lãi suất r = 0,79% = 0,0079, sau thời gian năm n = 24 tháng +) Số tiền bà Mai thu 2 Câu 17 Tính giá trị biểu thức sau: lo g a +lo ga a (1 ≠ a>0 ) a 17 Đáp án đúng: A A 13 B C −11 D −15 17 Giải thích chi tiết: lo g a +lo ga a =(−2lo g a a ) + lo ga a= 4 a 2 Câu 18 Trong phương trình sau, phương trình phương trình bậc theo A C Đáp án đúng: C B A C Đáp án đúng: C D Câu 19 Tìm nguyên hàm B D Giải thích chi tiết: Ta có Câu 20 Cho hàm số A C Đáp án đúng: C có đồ thị Hình Đồ thị Hình hàm số nào? B D Giải thích chi tiết: Ta có: ta loại đáp án B, C nên đồ thị nằm phía trục Ox nên Xét hàm số có: tâm đối xứng nên loại đáp án A Câu 21 Cho số phức hàm số lẻ nên đồ thị nhận O làm thỏa mãn A Đáp án đúng: A B Modun Giải thích chi tiết: Ta có : C nên Câu 22 Tìm giá trị tham số có điểm cực đại điểm cực tiểu A B Đáp án đúng: A Giải thích chi tiết: [Phương pháp trắc nghiệm] , gọi D để đồ thị hàm số: cách đường thẳng có phương trình: Hàm số có cực trị Bấm máy tính: ? C D hai nghiệm phương trình , ta có: Hai điểm cực trị đồ thị hàm số là: Gọi trung điểm Đường thẳng qua hai điểm cực trị là: Yêu cầu tốn Kết hợp với điều kiện Câu 23 Cho đường thẳng hai điểm A, B cho điểm Đường thẳng d cắt mặt cầu Phương trình mặt cầu có tâm I, là: A B C D Đáp án đúng: A Câu 24 Trong không gian , cho điểm đường thẳng qua , cắt vng góc với có phương trình A C Đáp án đúng: A : Đường thẳng B D Giải thích chi tiết: Trong không gian , cho điểm đường thẳng Đường thẳng qua , cắt vng góc với có phương trình A B C Lời giải D Gọi : ; Đường thẳng Vì có vectơ phương nên Suy phương Khi đó, đường thẳng Vậy phương trình đường thẳng qua : nhận vectơ làm vectơ Câu 25 Tính tích phân A Đáp án đúng: C B C D Giải thích chi tiết: Tính tích phân A B C D Lời giải Ta có Tính Khi Đặt Đổi cận: Vậy Chọn C Câu 26 Tìm giá trị lớn hàm số ? A Đáp án đúng: D C B Giải thích chi tiết: Đặt với Xét hàm số Ta có: D Vậy giá trị lớn hàm số Câu 27 Tìm họ nguyên hàm hàm số A B C Đáp án đúng: D Câu 28 Cho hàm số D Tìm khẳng định A Hàm số đồng biến khoảng B Hàm số đồng biến R C Hàm số nghịch biến R D Hàm số nghịch biến khoảng Đáp án đúng: A Câu 29 Quay hình vng ABCD quanh cạnh AB, ta A hình cầu B hình trụ C hình nón D hình chóp Đáp án đúng: B Câu 30 Cho hình lập phương mặt phẳng (tham khảo hình bên) Giá trị sin góc đường thẳng A B C D Đáp án đúng: C Câu 31 Nhân dịp tết trung thu, rạp xiếc tổ chức lưu diễn xã Vé bán gồm loại: Loại : 20000 đồng/vé; Loại : 50000 đồng/vé Người ta tính tốn rằng, để khơng phải bù lỗ số tiền buổi biểu diễn phải đạt tối thiểu 15 triệu đồng Gọi số vé loại loại mà rạp xiếc bán Trong trường hợp rạp xiếc có lãi, tính giá trị nhỏ A Đáp án đúng: A Câu 32 Cho số thực dương B C D theo thứ tự lập thành cấp số nhân, đồng thời với số thực dương theo thứ tự lập thành cấp số cộng Giá trị biểu thức A Đáp án đúng: B Câu 33 Cho hình nón phần B C có chiều cao độ dài đường sinh D bán kính đáy Ký hiệu diệntích tồn Cơng thức sau đúng? A B C Đáp án đúng: B Câu 34 Cho hình chóp Mặt phẳng D có , tam giác vng góc với mặt phẳng cạnh tam giác Thể tích khối chóp vuông A Đáp án đúng: D B C Câu 35 Tìm tất giá trị thực tham số để hàm số cực tiểu điểm cực trị đồ thị hàm số cách gốc tọa độ A Đáp án đúng: C B D có cực đại, C D Giải thích chi tiết: Ta có : tam thức bậc hai có phân biệt Khi Do đó: có hai nghiệm phân biệt có nghiệm là: có cực đại cực tiểu có hai nghiệm (1) tọa độ điểm cực trị đồ thị hàm số Ta có: cách gốc tọa độ : Đối chiếu với điều kiện (1), ta thấy thỏa mãn yêu cầu toán HẾT - 10