Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
1,15 MB
Nội dung
ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 059 Câu giá trị cực đại hàm số y=x3-x2+1 A y= -2 B y= -1 C y=1 Đáp án đúng: C Câu Tính A C Đáp án đúng: A D y=2 thu kết là: B D Giải thích chi tiết: Ta có: Đặt: Khi đó: Câu Gọi hai nghiệm phương trình A Đáp án đúng: C B Giá trị C D Giải thích chi tiết: Ta có Câu Biết A Đáp án đúng: C Câu Cho hàm số Tính B C liên tục R có bảng xét dấu D sau: Tìm số điểm cực tiểu hàm số cho A Đáp án đúng: D B C Câu Cho hình chóp A qua có đáy D hình bình hành Gọi giao tuyến hai mặt phẳng Khẳng định sau đúng? song song với B qua song song với C qua song song với Đáp án đúng: C D qua song song với Giải thích chi tiết: Cho hình chóp phẳng A có đáy hình bình hành Gọi giao tuyến hai mặt Khẳng định sau đúng? qua song song với B qua song song với C qua Lời giải song song với D qua song song với Ta có: với qua song song với Câu Cho hàm số liên tục thỏa Tính A B C Đáp án đúng: A D Giải thích chi tiết: Đặt Đổi cận Đặt Câu Một chất điểm thái nghỉ, chất điểm giây so với Vận tốc , chuyển động thẳng với vận tốc biến thiên theo thời gian quy luật xuất phát từ , (giây) khoảng thời gian tính từ lúc bắt đầu chuyển động Từ trạng xuất phát từ , chuyển động thẳng hướng với chậm có gia tốc thời điểm đuổi kịp ( số) Sau A B Đáp án đúng: C Giải thích chi tiết: Thời gian tính từ C xuất phát đến bị xuất phát D đuổi kịp tới lúc giây đuổi kịp giây, suy quãng đường Vận tốc chất điểm ( số); xuất phát từ trạng thái nghỉ nên có ; Quãng đường từ xuất phát đến đuổi kịp Vậy có ; suy vận tốc thời điểm đuổi kịp Câu Cho hình vng ABCD có cạnh a, M trung điểm AD, xét khối tròn xoay sinh tam giác CDM (cùng điểm nó) quay quanh đường AB Thể tích khối trịn xoay π a3 12 Đáp án đúng: C A B π a3 C π a3 12 D π a3 Giải thích chi tiết: Khi quay quanh AB, hình vng ABCD sinh mặt trụ tích V 1=π a3 Hình thang AMCB sinh hình nón cụt tích V 2= ( )( ) ( ) a2 a π a3 π a SB − π SA = π a − = 3 4 12 Vậy thể tích cần tìm V 1−V = 5πa 12 Câu 10 Tập hợp điểm biểu diễn số phức thỏa mãn khối tròn xoay sinh cho hình phẳng giới hạn đường cong quay xung quanh trục hoành A 320 Đáp án đúng: B B Giải thích chi tiết: Xét điểm Ta có Vậy , thuộc elip nhận Từ suy C Gọi đường cong Tính thể tích , trục hoành đường thẳng , D điểm biểu diễn số phức Khi , hai tiêu điểm , Phương trình elip Thể tích khối trịn xoay sinh cho hình phẳng giới hạn đường cong , quay xung quanh trục hoành , trục hoành đường thẳng Câu 11 Diện tích hình phẳng giới hạn đồ thị hàm số A , trục hoành hai đường thẳng C Đáp án đúng: C B D Giải thích chi tiết: Diện tích hình phẳng giới hạn đồ thị hàm số thẳng A Lời giải , trục hoành hai đường B C D Ta có: Diện tích hình phẳng giới hạn đồ thị hàm số , trục hoành hai đường thẳng Diện tích hình phẳng giới hạn đồ thị hàm số , trục hoành hai đường thẳng Câu 12 Tìm nguyên hàm hàm số A C Đáp án đúng: D B D Giải thích chi tiết: Áp dụng công thức Hàm số rút gọn thành Nguyên hàm = Câu 13 Phần ảo số phức z=( −i ) ( 1+ i ) A B C −1 D −3 A B Đáp án đúng: B Câu 14 C D Cho hàm số xác định thỏa mãn Tính A B C Đáp án đúng: C D Câu 15 Tìm m để phương trình A Đáp án đúng: B có nghiệm B C cho D Giải thích chi tiết: Đặt Phương trình trở thành: Phương trình có hai nghiệm (nhận) Câu 16 Cho khối lăng trụ tứ giác có cạnh đáy cạnh bên Thể tích khối lăng trụ cho bằng: A Đáp án đúng: A Câu 17 Cho số phức B C thay đổi thỏa mãn biểu diễn số phức A Đáp án đúng: A B Gọi đường cong tạo tất điểm thay đổi Tính diện tích hình phẳng giới hạn đường cong C Giải thích chi tiết: Ta có Khi hệ thức D D trở thành Gọi điểm biểu diễn số phức và ; điểm biểu diễn số phức mặt phẳng tọa độ Vậy nên Vì nên tập hợp điểm điểm biểu diễn số phức thỏa mãn điều kiện Elip có Diện tích Elip Câu 18 Tìm phần thực số phức A Đáp án đúng: D Câu 19 B C D 2 Tìm tất giá trị tham số để hàm số y=x −2 m x +m x +2 đạt cực tiểu A m=3 B m